搜尋
首頁科技週邊人工智慧DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

近年來,電腦視覺領域的生成技術越來越強,對應「偽造」技術也越來越成熟,從DeepFake換臉到動作模擬,讓人難辨真假。

最近英偉達又整了個大的,在NeurIPS 2022會議上發表了一個新的隱式扭曲(Implicit Warping)框架,使用一組來源圖像驅動影片的運動來製作目標動畫

DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

論文連結:https://arxiv.org/pdf/2210.01794.pdf

#從效果來看,就是生成的影像更逼真了,人物在影片裡動,背景也不會改變

輸入的多個來源圖片通常都會提供不同的外觀資訊,減少了產生器「幻想」的空間# ,例如下面這兩張作為模型輸入。

可以發現,和其他模型相比,隱式扭曲不會產生類似美顏效果的「空間扭曲」之術。

因為人物遮蔽的關係,多張來源影像還可以提供更完善的背景

DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

從下面的影片可以看到,如果只有左邊的一張圖片,背景後面的是「BD」還是「 ED」很難猜測出來,就會導致背景的失真,而兩張圖片就會產生更穩定的影像。

在比較其他模型時,只有一張來源影像的效果也要更好。

DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

神奇的隱式扭曲

#學術界對於視訊模仿最早可以追溯到2005年,許多專案面部再現的實時表情傳輸、Face2Face、合成歐巴馬、Recycle-GAN、ReenactGAN、動態神經輻射場等等多樣化地利用當時有限的幾種技術,如生成對抗網路(GAN) 、神經輻射場(NeRF)和自編碼器。

並不是所有方法都在嘗試從單一幀圖像中生成視頻,也有一些研究對視頻中的每個幀進行複雜的計算,這實際上也正是Deepfake所走的模仿路線。

但由於DeepFake模型獲取的資訊較少,這種方法需要對每個視訊片段進行訓練,相比DeepFaceLab或FaceSwap的開源方法相比性能有所下降,這兩個模型能夠將一個身分強加到任意數量的影片片段。

2019年發布的FOMM模型讓角色們隨著影片動起來,為影片模仿任務再次注入了一針強心劑。

隨後其他研究人員試圖從單一的臉孔圖像或全身表現中獲得多個姿勢和表情;但是這種方法通常只適用於那些相對沒有表情和不能動的主體,例如相對靜止的“說話的頭”,因為在面部表情或姿勢中沒有網絡必須解釋的“行為突然變化”。

DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

雖然其中一些技術和方法在深度偽造技術和潛在的擴散影像合成方法大火之前獲得了公眾的關注,但適用範圍有限,多功能性受到質疑。

而英偉達這次著重處理的隱式扭曲,則是在多幀之間甚至只有兩幀之間獲取信息,而不是從一幀中獲得所有必要的姿勢信息,這種設置在其他的競爭模型中都不存在,或者處理得非常糟糕。

DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

例如迪士尼的工作流程就是由高級動畫師繪製主框架和關鍵幀,其他初級動畫師負責繪製中間幀。

透過對先前版本的測試,英偉達的研究人員發現,先前方法的結果品質會隨著額外的「關鍵影格」而惡化,而新方法與動畫製作的邏輯一致,隨著關鍵影格數量的增加,效能也會以線性的方式提高。

如果clip的中間發生了一些突然的轉變,例如一個事件或表情在起始幀或結束幀中都沒有表現出來,隱式扭曲可以在這中間點添加一幀,額外的資訊會回饋到整個clip的注意機制。

DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

模型結構

先前的方法,如FOMM,Monkey-Net 和face-vid2vid等使用明確扭曲繪製一個時間序列,從來源人臉和控制運動中提取的資訊必須適應且符合這個時間序列。

在這種模型設計下,關鍵點的最終映射是相當嚴格的。

相較之下,隱式扭曲使用一個跨模態注意層,其工作流程包含較少的預定義bootstrapping,可以適應來自多個框架的輸入。

工作流程也不需要在每個關鍵點的基礎上扭曲,系統可以從一系列影像中選擇最合適的特性。

DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

隱含扭曲也復用了一些FOMM框架中的關鍵點預測元件,最後用一個簡單的U-net對衍生的空間驅動關鍵點表示進行編碼。另外一個單獨的U-net則用來與衍生的空間表示一起對來源影像進行編碼,兩個網路都可以在64px (256px 平方輸出)到384x384px 的解析度範圍內運作。

DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

因為這種機制不能自動解釋任何給定影片中姿勢和運動的所有可能變化,所以額外的關鍵影格是必要的,可以臨時添加。如果沒有這種幹預能力,與目標運動點相似度不足的key將自動uprate,從而導致輸出品質的下降。

研究人員對此的解釋是,雖然它是一組給定的關鍵影格中與query最相似的key,但可能不足以產生一個好的輸出。

例如,假設來源影像有一張嘴唇閉合的臉,而驅動影像則有一張嘴唇張開、牙齒暴露的臉。在這種情況下,來源影像中沒有適合驅動影像嘴部區域的key(和value)。

該方法透過學習額外的與圖像無關的key-value pairs來克服這個問題,可以應對來源圖像中缺少資訊的情況。

儘管目前的實現速度相當快,在512x512px 的圖像上大約10 FPS,研究人員認為,在未來的版本中,pipeline可以透過一個因子化的I-D 注意力層或空間降低注意力(SRA)層(即金字塔視覺Transformer)來優化。

DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

由於隱式扭曲使用的是全域注意力而不是局部注意力,因此它可以預測先前模型無法預測的因素。

實驗結果

研究人員在VoxCeleb2資料集,更具挑戰性的TED Talk 資料集和TalkingHead-1KH 資料集上測試了該系統,比較了256x256px 和完整的512x512px 解析度之間的基線,所使用的指標包括FID、基於AlexNet的LPIPS和峰值信噪比(pSNR)。

用於測試的對比框架包括FOMM和face-vid2vid,以及AA-PCA,由於以前的方法很少或根本沒有能力使用多個關鍵幀,這也是隱式扭曲的主要創新,研究人員也設計了相似測試方法。

DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

隱含扭曲在大多數指標上表現優於大多數對比方法。

在多關鍵幀重建測試中,研究人員使用最多180幀序列,並選擇間隙幀,隱式扭曲這次獲得了全面勝利。

DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

隨著來源影像數量的增加,此方法可以獲得更好的重建結果,所有指標的得分都有所提高。

而隨著來源影像數量的增加,先前工作的重建效果變差,與預期相反。

DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

透過AMT的工作人員進行質性研究後,也認為隱式變形的生成結果強於其他方法。

DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?

如果能夠使用這種框架,用戶將能夠製作出更連貫、更長的視頻模擬和全身深度假視頻,所有這些都能夠展現出比該系統已經試驗過的任何框架都要大得多的運動範圍。

不過更逼真的圖像合成研究也帶來了擔憂,因為這些技術可以輕易地用於偽造,論文中也有標準的免責聲明。

如果我們的方法被用來製造DeepFake產品,就有可能產生負面影響。惡意語音合成透過跨身分轉移及傳送虛假資料,製作人物的虛假影像,導致身分被盜用或散播假新聞。但在受控設定中,同樣的技術也可以用於娛樂目的。

論文也指出了該系統在神經視訊重建方面的潛力,例如Google的Project Starline,在這個框架中,重建工作主要集中在客戶端,利用來自另一端的人的稀疏運動訊息。

這個方案越來越引起研究界的興趣,也有公司打算透過發送純運動數據或稀疏間隔的關鍵影格來實現低頻寬的電話會議,這些關鍵影格將在到達目標客戶端時被解釋和插入到完整的高清視頻中。

以上是DeepFake從未如此真實!英偉達最新提出的「隱式扭曲」到底有多強?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
烹飪創新:人工智能如何改變食品服務烹飪創新:人工智能如何改變食品服務Apr 12, 2025 pm 12:09 PM

AI增強食物準備 在新生的使用中,AI系統越來越多地用於食品製備中。 AI驅動的機器人在廚房中用於自動化食物準備任務,例如翻轉漢堡,製作披薩或組裝SA

Python名稱空間和可變範圍的綜合指南Python名稱空間和可變範圍的綜合指南Apr 12, 2025 pm 12:00 PM

介紹 了解Python函數中變量的名稱空間,範圍和行為對於有效編寫和避免運行時錯誤或異常至關重要。在本文中,我們將研究各種ASP

視覺語言模型(VLMS)的綜合指南視覺語言模型(VLMS)的綜合指南Apr 12, 2025 am 11:58 AM

介紹 想像一下,穿過​​美術館,周圍是生動的繪畫和雕塑。現在,如果您可以向每一部分提出一個問題並獲得有意義的答案,該怎麼辦?您可能會問:“您在講什麼故事?

聯發科技與kompanio Ultra和Dimenty 9400增強優質陣容聯發科技與kompanio Ultra和Dimenty 9400增強優質陣容Apr 12, 2025 am 11:52 AM

繼續使用產品節奏,本月,Mediatek發表了一系列公告,包括新的Kompanio Ultra和Dimenty 9400。這些產品填補了Mediatek業務中更傳統的部分,其中包括智能手機的芯片

本週在AI:沃爾瑪在時尚趨勢之前設定了時尚趨勢本週在AI:沃爾瑪在時尚趨勢之前設定了時尚趨勢Apr 12, 2025 am 11:51 AM

#1 Google推出了Agent2Agent 故事:現在是星期一早上。作為AI驅動的招聘人員,您更聰明,而不是更努力。您在手機上登錄公司的儀表板。它告訴您三個關鍵角色已被採購,審查和計劃的FO

生成的AI遇到心理摩托車生成的AI遇到心理摩托車Apr 12, 2025 am 11:50 AM

我猜你一定是。 我們似乎都知道,心理障礙由各種chat不休,這些chat不休,這些chat不休,混合了各種心理術語,並且常常是難以理解的或完全荒謬的。您需要做的一切才能噴出fo

原型:科學家將紙變成塑料原型:科學家將紙變成塑料Apr 12, 2025 am 11:49 AM

根據本週發表的一項新研究,只有在2022年製造的塑料中,只有9.5%的塑料是由回收材料製成的。同時,塑料在垃圾填埋場和生態系統中繼續堆積。 但是有幫助。一支恩金團隊

AI分析師的崛起:為什麼這可能是AI革命中最重要的工作AI分析師的崛起:為什麼這可能是AI革命中最重要的工作Apr 12, 2025 am 11:41 AM

我最近與領先的企業分析平台Alteryx首席執行官安迪·麥克米倫(Andy Macmillan)的對話強調了這一在AI革命中的關鍵但不足的作用。正如Macmillan所解釋的那樣,原始業務數據與AI-Ready Informat之間的差距

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。