什麼是白噪音? CSS中如何利用柏林噪音繪製酷炫圖形?以下這篇文章為大家介紹一下利用噪音建立美妙的 CSS 圖形的方法,希望對大家有幫助!
在平常,我非常喜歡利用 CSS 去建立一些有趣的圖形。 【推薦學習:css影片教學】
我們先來看一個簡單的範例。首先,假設我們實作一個 10x10 的格子:
#此時,我們可以利用一些隨機效果,優化這個圖案。譬如,我們給它隨機添加不同的顏色:
雖然利用了隨機,隨機填充了每一個格子的顏色,看著有那麼點意思,但是這只是一幅雜亂無章的圖形,並沒有什麼藝術感。
這是為什麼呢?因為這裡的隨機屬於完全隨機,屬於一種白噪音。
雜訊(Noise)其實就是一個隨機數產生器。
那麼,什麼是白噪音呢?如果從程式設計師的角度去理解的話,可以理解為我們在 JavaScript 中使用的 random()
函數,產生的數大致在 0~1 內是完全隨機的。
而雜訊的基礎是隨機數,譬如我們為上述的圖形每一個格子添加了一個隨機顏色,得到的就是一幅雜亂無章的圖形塊,沒有太多美感可言。
白噪音或白雜訊,是一種功率頻譜密度為常數的隨機訊號。換句話說,此訊號在各個頻段上的功率譜密度是一樣的,由於白光是由各種頻率(顏色)的單色光混合而成,因而此訊號的這種具有平坦功率譜的性質被稱作是“白色的”,此訊號也因此被稱為白噪聲。
因為,利用白噪音產生的圖形,看起不自然,也不太具備美感。
觀察現實生活中的自然噪聲,它們不會長成上面的樣子。例如木頭的紋理、山脈的起伏,它們的形狀是趨於分形狀(fractal)的,即包含了不同程度的細節,這些隨機的成分並不是完全獨立的,它們之間有一定的關聯。和顯然,白噪聲沒有做到這一點。
這樣,我們就自然而然的引入了柏林噪音。
Perlin 雜訊 ( Perlin noise ) 指由 Ken Perlin 發明的自然雜訊產生演算法。
在介紹它之前,我們先看看,上述的圖形,如果我們不使用白噪聲(完全隨機),而是使用柏林噪聲,會是什麼樣子呢?
它可能是這樣:
這裡我製作了一張動圖,大家可以感受下,每次點擊都是一次利用了柏林噪聲隨機,賦予每個格子不同隨機顏色的結果:
可以看到,利用柏林噪音隨機效果產生的圖形,彼此之間並非毫無關聯,它們之間的變化是連續的,彼此之間並沒有發生跳變。這種隨機效果,類似自然界中的隨機效果,譬如上面說的,木頭紋理、山脈起伏的變化。
上面說的,雜訊其實就是一個隨機數產生器。而這裡:
白噪音的問題在於,它實在太過於隨機,毫無規律可言
而柏林噪音則是基於隨機,並在此基礎上利用緩動曲線進行平滑插值,使得最終得到噪音效果更加趨於自然
具體的實現方式這裡Improved Noise reference implementation,可以看看,原始碼其實不是很多:
// This code implements the algorithm I describe in a corresponding SIGGRAPH 2002 paper. // JAVA REFERENCE IMPLEMENTATION OF IMPROVED NOISE - COPYRIGHT 2002 KEN PERLIN. public final class ImprovedNoise { static public double noise(double x, double y, double z) { int X = (int)Math.floor(x) & 255, // FIND UNIT CUBE THAT Y = (int)Math.floor(y) & 255, // CONTAINS POINT. Z = (int)Math.floor(z) & 255; x -= Math.floor(x); // FIND RELATIVE X,Y,Z y -= Math.floor(y); // OF POINT IN CUBE. z -= Math.floor(z); double u = fade(x), // COMPUTE FADE CURVES v = fade(y), // FOR EACH OF X,Y,Z. w = fade(z); int A = p[X ]+Y, AA = p[A]+Z, AB = p[A+1]+Z, // HASH COORDINATES OF B = p[X+1]+Y, BA = p[B]+Z, BB = p[B+1]+Z; // THE 8 CUBE CORNERS, return lerp(w, lerp(v, lerp(u, grad(p[AA ], x , y , z ), // AND ADD grad(p[BA ], x-1, y , z )), // BLENDED lerp(u, grad(p[AB ], x , y-1, z ), // RESULTS grad(p[BB ], x-1, y-1, z ))),// FROM 8 lerp(v, lerp(u, grad(p[AA+1], x , y , z-1 ), // CORNERS grad(p[BA+1], x-1, y , z-1 )), // OF CUBE lerp(u, grad(p[AB+1], x , y-1, z-1 ), grad(p[BB+1], x-1, y-1, z-1 )))); } static double fade(double t) { return t * t * t * (t * (t * 6 - 15) + 10); } static double lerp(double t, double a, double b) { return a + t * (b - a); } static double grad(int hash, double x, double y, double z) { int h = hash & 15; // CONVERT LO 4 BITS OF HASH CODE double u = h<8 ? x : y, // INTO 12 GRADIENT DIRECTIONS. v = h<4 ? y : h==12||h==14 ? x : z; return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v); } static final int p[] = new int[512], permutation[] = { 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 }; static { for (int i=0; i < 256 ; i++) p[256+i] = p[i] = permutation[i]; } }
當然,本文不是專門來論述柏林噪音如何實現的,上述程式碼誰看了都頭大。我們只需要知道,我們可以藉助柏林噪音去建構更規律的圖形效果。讓我們的圖形更具美感。
那麼,在 CSS 中我們如何去使用柏林噪音呢?
一种方式是找一些现成的库,譬如 p5.js 里面的 noise
函数。
当然,这里,我习惯使用 CSS-doodle,这个 CSS 图形构建库我在多篇文章中已经都有介绍过。
简单而言,CSS-doodle 它是一个基于 Web-Component 的库。允许我们快速的创建基于 CSS Grid 布局的页面,并且提供各种便捷的指令及函数(随机、循环等等),让我们能通过一套规则,得到不同 CSS 效果。可以简单看看它的主页 -- Home Page of CSS-doodle,只需要 5min 也许就能快速上手。
譬如上述的图形,它的全部代码:
<css-doodle grid="10x10"> :doodle { @size: 50vmin; gap: 1px; } background: hsl(@rn(255, 1, 2), @rn(10%, 90%), @rn(10%, 90%)); </css-doodle>
没错,只需要这么寥寥几句,就可以勾勒出这样一幅图案:
CSS Pattern -- CSS Doodle
https://codepen.io/Chokcoco/pen/eYMNWNq
简单解释下:
css-doodle
是基于 Web-Component 封装的,基本所有的代码都写在 <css-doodle>
标签内,当然也可以写一些原生 CSS/JavaScript 辅助
使用 grid="10x10"
即可生成一个 10x10 的 Grid 网格,再配合 @size: 50vmin
,表示生成一个宽高大小为 50vmin
的 10x10 Grid 网格布局,其中 gap: 1px
表示 Gird 网格布局的 gap
最后,整个代码的核心部分即是 background: hsl(@rn(255, 1, 2), @rn(10%, 90%), @rn(10%, 90%))
,这里即表示对每个 grid item 赋予背景色,其中 @rn()
,就是最核心的部分,利用了柏林噪声算法,有规律的将背景色 map 到每一个 grid 上
当然,最新的 CSS-doodle 文档上暂时还查不到 @rn()
function 的用法。为此我特意请教了下该库的作者袁川老师。
得到的回复是,官网近期会重构,所以目前没有更新最新的语法。同时,@rn()
的实现使用的就是柏林噪声的实现。同时,函数相当于是类似 p5.js 里面的 noise 函数同时做了 map,map 到前面函数参数设定的 from 到 to 范围内。
这里的 @rn()
柏林噪声随机会根据 Grid 网格,Map 到每一个网格上,使之相邻的 Grid item 之间的值,存在一定的关联。
举个栗子,我们有个 10x10 的 Grid 布局,给其每个 Grid item,添加一个伪元素,伪元素的内容,使用 @r(100)
进行填充,注意,@r()
函数是没有规律的完全随机,那么生成的数字大概是这样的:
可以看到,它们每个各自之间的数字,是完全随机毫无关联的。
如果我们使用有关联的柏林噪声随机呢?使用 @rn(100)
填充每个格子的话,大概是这样:
观察一下,很容易发现,相邻的盒子之间,或者多个连续的格子之间,存在一定的关联性,这就使得,我们利用它创造出来的图形,会具备一定的规律。
可以简单看看源码的实现,当前,前提是你需要对 CSS-doodle 的用法有一定的了解:
rn({ x, y, context, position, grid, extra, shuffle }) { let counter = 'noise-2d' + position; let [ni, nx, ny, nm, NX, NY] = last(extra) || []; let isSeqContext = (ni && nm); return (...args) => { let {from = 0, to = from, frequency = 1, amplitude = 1} = get_named_arguments(args, [ 'from', 'to', 'frequency', 'amplitude' ]); if (args.length == 1) { [from, to] = [0, from]; } if (!context[counter]) { context[counter] = new Perlin(shuffle); } frequency = clamp(frequency, 0, Infinity); amplitude = clamp(amplitude, 0, Infinity); let transform = [from, to].every(is_letter) ? by_charcode : by_unit; let t = isSeqContext ? context[counter].noise((nx - 1)/NX * frequency, (ny - 1)/NY * frequency, 0) : context[counter].noise((x - 1)/grid.x * frequency, (y - 1)/grid.y * frequency, 0); let fn = transform((from, to) => map2d(t * amplitude, from, to, amplitude)); let value = fn(from, to); return push_stack(context, 'last_rand', value); }; },
语法大概是 @rn(from, to, frequency, amplitude)
,其中 from
、to
表示随机范围,而 frequency
表示噪声的频率,amplitude
表示噪声的振幅。这两个参数可以理解为控制随机效果的频率和幅度。
其中 new Perlin(shuffle)
即运用到了柏林噪声算法。
OK,上文介绍了很多与噪声和 CSS-doodle 相关的知识,下面我们回归 CSS,回归本文的主体。
在上述图形的基础上,我们可以再添加上随机的 scale()
、以及 skew()
。如果是完全随机的话,代码是这样的:
<css-doodle grid="20"> :doodle { grid-gap: 1px; width: 600px; height: 600px; } background: hsl(@r(360), 80%, 80%); transform: scale(@r(1.1, .3, 3)) skew(@r(-45deg, 45deg, 3)); </css-doodle>
html, body { width: 100%; height: 100%; background-color: #000; }
上述代码表示的是一个 20x20 的 Grid 网格,每个 Grid item 都设置了完全随机的背景色、scale()
以及 skew()
。当然,这里我们用的是 @r()
而不是 @rn()
,每个格子的每个属性的随机,没有任何的关联,那么我们会得到这样一幅图案:
好吧,这是什么鬼,毫无美感可言。我们只需要在上述代码的基础上,将普通的完全随机,改为柏林噪声随机 @rn()
:
<css-doodle grid="20"> :doodle { grid-gap: 1px; width: 600px; height: 600px; } background: hsl(@rn(360), 80%, 80%); transform: scale(@rn(1.1, .3, 3)) skew(@rn(-45deg, 45deg, 3)); </css-doodle>
此时,就能得到完全不一样的效果:
这是由于,每个 Grid item 的随机效果,都基于它们在 Grid 布局中的位置,彼此存在关联,这就是柏林噪声随机的效果。
我可以再添加上 hue-rotate
动画:
html, body { width: 100%; height: 100%; background-color: #000; animation: change 10s linear infinite; } @keyframes change { 10% { filter: hue-rotate(360deg); } }
看看效果,并且,在 CSS-doodle 中,由于随机效果,每次刷新,都可以得到不一样的图案:
CSS Doodle - CSS Pattern2
https://codepen.io/Chokcoco/pen/mdxJrGR
当然,这个样式还可以搭配各式各样其他的 idea,像是这样:
CSS Doodle - CSS Pattern 3
https://codepen.io/Chokcoco/pen/wvmazOy
又或者是这样:
CSS Doodle - CSS Pattern 4
https://codepen.io/Chokcoco/pen/dymoOGN
emmm,又或者这样:
CSS Doodle - CSS Pattern 5
https://codepen.io/Chokcoco/pen/PoRqdYP
是的,我们可以把柏林噪声随机应用在各种属性上,我们可以放飞想象,去尝试各种不一样的搭配。下面这个, 就是把柏林噪声运用在点阵定位上:
<css-doodle grid="30x30"> :doodle { @size: 90vmin; perspective: 10px; } position: absolute; top: 0; left: 0; width: 2px; height: 2px; border-radius: 50%; top: @rn(1%, 100%, 1.5); left: @rn(1%, 100%, 1.5); transform: scale(@rn(.1, 5, 2)); background: hsl(@rn(1, 255, 3), @rn(10%, 90%), @rn(10%, 90%)); </css-doodle>
CodePen Demo -- CSS Doodle - CSS Pattern6
https://codepen.io/Chokcoco/pen/GRxJXVE
亦或者配合运用在 transform: rotate()
上:
<css-doodle grid="20x5"> @place-cell: center; @size: calc(@i * 1.5%); :doodle { width: 60vmin; height: 60vmin; } z-index: calc(999 - @i); border-radius: 50%; border: 1px @p(dashed, solid, double) hsl(@rn(255), 70%, @rn(60, 90%)); border-bottom-color: transparent; border-left-color: transparent; transform: rotate(@rn(-720deg, 720deg)) scale(@rn(.8, 1.2, 3)); </css-doodle>
效果如下:
当然,每一次随机,都会是不一样的结果:
CodePen Demo -- CSS doodle - CSS Pattern7
https://codepen.io/Chokcoco/pen/ZExGjoy
好吧,我个人想象力有限,大家可以自行找到任一 DEMO,Fork 后自己去尝试碰撞出不一样的火花。
原文地址:https://segmentfault.com/a/1190000042103702
作者:chokcoco
(学习视频分享:web前端入门)
以上是聊聊CSS中如何利用柏林噪音繪製酷炫圖形!的詳細內容。更多資訊請關注PHP中文網其他相關文章!