首頁 >後端開發 >Golang >go語言中的排序講解

go語言中的排序講解

尚
轉載
2020-01-16 17:30:283060瀏覽

go語言中的排序講解

go語言的排序思路和 c 和 c 有些差異。 c 預設是對數組進行排序, c 是對一個序列進行排序, go 則更寬泛一些,待排序的可以是任何對象, 雖然很多情況下是一個slice (分片, 類似於數組),或者是包含slice的一個對象。

排序(介面)的三個要素:

待排序元素個數n ;

第i 與第j 個元素的比較函數cmp ;

第i 和第j 個元素的交換swap ;

乍一看條件3 是多餘的, c 和c 都不提供swap 。 c 的qsort 的用法: qsort(data, n, sizeof(int), cmp_int); data 是起始位址, n 是元素個數, sizeof(int) 是每個元素的大小, cmp_int 是一個比較兩個int的函數。

c 的 sort 的用法: sort(data, data n, cmp_int); data 是第一個元素的位置, data n 是最後一個元素的下一個位置, cmp_int 是比較函數。

基本型別int 、 float64 與string 的排序

升序排序

對int 、 float64 和string 陣列或是分片的排序, go 分別提供了sort.Ints() 、 sort.Float64s() 和sort.Strings() 函數, 預設都是從小到大排序。 ( 沒有sort.Float32s() 函數,me 相當有點奇怪。)

package main
 
import (
    "fmt"
    "sort"
)
 
func main() {
    intList := [] int {2, 4, 3, 5, 7, 6, 9, 8, 1, 0}
    float8List := [] float64 {4.2, 5.9, 12.3, 10.0, 50.4, 99.9, 31.4, 27.81828, 3.14}
    // float4List := [] float32 {4.2, 5.9, 12.3, 10.0, 50.4, 99.9, 31.4, 27.81828, 3.14}    // no function : sort.Float32s
    stringList := [] string {"a", "c", "b", "d", "f", "i", "z", "x", "w", "y"}
   
    sort.Ints(intList)
    sort.Float64s(float8List)
    sort.Strings(stringList)
   
    fmt.Printf("%v\n%v\n%v\n", intList, float8List, stringList)
 
}

降序排序

int 、 float64 和string 都有預設的升序排序函數, 現在問題是如果降序如何?有其他語言程式設計經驗的人都知道,只需要交換 cmp 的比較法則就可以了, go 的實作是類似的,然而又有所不同。

go 中對某個Type 的物件obj 排序, 可以使用sort.Sort(obj) 即可,就是需要對Type 型別綁定三個方法: Len() 求長度、 Less(i,j ) 比較第i 和第j 個元素大小的函數、 Swap(i,j) 交換第i 和第j 個元素的函數。

sort 套件下的三種類型 IntSlice 、 Float64Slice 、 StringSlice 分別實作了這三種方法, 對應排序的是 [] int 、 [] float64 和 [] string。如果期望逆序排序, 只需要將對應的 Less 函數簡單修改一下即可。

go 的sort 套件可以使用sort.Reverse(slice) 來調換slice.Interface.Less ,也就是比較函數,所以, int 、 float64 和string 的逆序排序函數可以這麼寫:

package main
 
import (
    "fmt"
    "sort"
)
 
func main() {
    intList := [] int {2, 4, 3, 5, 7, 6, 9, 8, 1, 0}
    float8List := [] float64 {4.2, 5.9, 12.3, 10.0, 50.4, 99.9, 31.4, 27.81828, 3.14}
    stringList := [] string {"a", "c", "b", "d", "f", "i", "z", "x", "w", "y"}
   
    sort.Sort(sort.Reverse(sort.IntSlice(intList)))
    sort.Sort(sort.Reverse(sort.Float64Slice(float8List)))
    sort.Sort(sort.Reverse(sort.StringSlice(stringList)))
   
    fmt.Printf("%v\n%v\n%v\n", intList, float8List, stringList)
}

深入理解排序

sort 套件中有一個sort.Interface 接口,該接口有三個方法Len() 、 Less(i,j) 和Swap(i,j) 。通用排序函數 sort.Sort 可以排序任何實作了 sort.Inferface 介面的物件(變數)。

對於[] int 、[] float64 和[] string 除了使用特殊指定的函數外,還可以使用改裝過的類型IntSclice 、 Float64Slice 和StringSlice , 然後直接呼叫它們對應的Sort() 方法;因為這三種類型也實作了sort.Interface 接口, 所以可以透過sort.Reverse 來轉換這三種類型的Interface.Less 方法來實現逆向排序, 這就是前面最後一個排序的使用。

下面使用了一個自訂(使用者定義)的 Reverse 結構體, 而不是 sort.Reverse 函數, 來實作逆向排序。

package main
 
import (
    "fmt"
    "sort"
)
 
// 自定义的 Reverse 类型
type Reverse struct {
    sort.Interface    // 这样, Reverse 可以接纳任何实现了 sort.Interface (包括 Len, Less, Swap 三个方法) 的对象
}
 
// Reverse 只是将其中的 Inferface.Less 的顺序对调了一下
func (r Reverse) Less(i, j int) bool {
    return r.Interface.Less(j, i)
}
 
func main() {
    ints := []int{5, 2, 6, 3, 1, 4}     // 未排序
 
    sort.Ints(ints)                                     // 特殊排序函数, 升序
    fmt.Println("after sort by Ints:\t", ints)  // [1 2 3 4 5 6]
 
    doubles := []float64{2.3, 3.2, 6.7, 10.9, 5.4, 1.8}
 
    sort.Float64s(doubles)                                      // float64 排序版本 1
    fmt.Println("after sort by Float64s:\t", doubles)   // [1.8 2.3 3.2 5.4 6.7 10.9]
 
    strings := []string{"hello", "good", "students", "morning", "people", "world"}
    sort.Strings(strings)
    fmt.Println("after sort by Strings:\t", strings)    // [good hello mornig people students world]
 
    ipos := sort.SearchInts(ints, -1)    // int 搜索
    fmt.Printf("pos of 5 is %d th\n", ipos)     // 并不总是正确呀 ! (搜索不是重点)
 
    dpos := sort.SearchFloat64s(doubles, 20.1)    // float64 搜索
    fmt.Printf("pos of 5.0 is %d th\n", dpos)   // 并不总是正确呀 !
 
    fmt.Printf("doubles is asc ? %v\n", sort.Float64sAreSorted(doubles))
 
    doubles = []float64{3.5, 4.2, 8.9, 100.98, 20.14, 79.32}
    // sort.Sort(sort.Float64Slice(doubles))    // float64 排序方法 2
    // fmt.Println("after sort by Sort:\t", doubles)    // [3.5 4.2 8.9 20.14 79.32 100.98]
    (sort.Float64Slice(doubles)).Sort()         // float64 排序方法 3
    fmt.Println("after sort by Sort:\t", doubles)       // [3.5 4.2 8.9 20.14 79.32 100.98]
 
    sort.Sort(Reverse{sort.Float64Slice(doubles)})    // float64 逆序排序
    fmt.Println("after sort by Reversed Sort:\t", doubles)      // [100.98 79.32 20.14 8.9 4.2 3.5]
}

sort.Ints / sort.Float64s / sort.Strings 分別來對整數/浮點型/字串型分片或是叫做片段,或是不嚴格滴說是數組,進行排序。然後是有個測試是否有秩序的函數。還有分別對應的 search 函數,不過,發現搜尋函數只能定位到如果存在的話的位置,不存在的話,位置就是不對的。

關於一般的陣列排序,程式中顯示了,有 3 種方法!目前提供的三種類型 int,float64 和 string 呈現對稱的,也就是你有的,對應的我也有。

關於翻轉排序或是逆向排序,就是用個翻轉結構體,重寫 Less 函數即可。上面的 Reverse 是個通用的結構體。

上面說了那麼多, 只是對基本型別進行排序, 該到說說 struct 結構體類型的排序的時候了, 實際中這個用得到的會更多。

結構體類型的排序

結構體類型的排序是透過使用sort.Sort(slice) 實現的, 只要slice 實作了sort.Interface 的三個方法就可以。雖然這麼說,但是排序的方法卻有那麼好幾種。首先一種是模擬排序 [] int 建構對應的 IntSlice 類型,然後對 IntSlice 類型實作 Interface 的三個方法。

結構體排序方法1

package main
 
import (
    "fmt"
    "sort"
)
 
type Person struct {
    Name string    // 姓名
    Age  int    // 年纪
}
 
// 按照 Person.Age 从大到小排序
type PersonSlice [] Person
 
func (a PersonSlice) Len() int {    // 重写 Len() 方法
    return len(a)
}
func (a PersonSlice) Swap(i, j int){     // 重写 Swap() 方法
    a[i], a[j] = a[j], a[i]
}
func (a PersonSlice) Less(i, j int) bool {    // 重写 Less() 方法, 从大到小排序
    return a[j].Age < a[i].Age
}
 
func main() {
    people := [] Person{
        {"zhang san", 12},
        {"li si", 30},
        {"wang wu", 52},
        {"zhao liu", 26},
    }
 
    fmt.Println(people)
 
    sort.Sort(PersonSlice(people))    // 按照 Age 的逆序排序
    fmt.Println(people)
 
    sort.Sort(sort.Reverse(PersonSlice(people)))    // 按照 Age 的升序排序
    fmt.Println(people)
 
}

這完全是模擬的方式,所以如果懂了IntSlice 自然就理解這裡了,反過來,理解了這裡那麼IntSlice 那裡也就懂了。

結構體排序方法 2

方法 1 的缺点是 : 根据 Age 排序需要重新定义 PersonSlice 方法,绑定 Len 、 Less 和 Swap 方法, 如果需要根据 Name 排序, 又需要重新写三个函数; 如果结构体有 4 个字段,有四种类型的排序,那么就要写 3 × 4 = 12 个方法, 即使有一些完全是多余的, 仔细思量一下,根据不同的标准 Age 或是 Name, 真正不同的体现在 Less 方法上,所以, me 们将 Less 抽象出来, 每种排序的 Less 让其变成动态的,比如下面一种方法。

package main
 
import (
    "fmt"
    "sort"
)
 
type Person struct {
    Name string    // 姓名
    Age  int    // 年纪
}
 
type PersonWrapper struct {
    people [] Person
    by func(p, q * Person) bool
}
 
func (pw PersonWrapper) Len() int {    // 重写 Len() 方法
    return len(pw.people)
}
func (pw PersonWrapper) Swap(i, j int){     // 重写 Swap() 方法
    pw.people[i], pw.people[j] = pw.people[j], pw.people[i]
}
func (pw PersonWrapper) Less(i, j int) bool {    // 重写 Less() 方法
    return pw.by(&pw.people[i], &pw.people[j])
}
 
func main() {
    people := [] Person{
        {"zhang san", 12},
        {"li si", 30},
        {"wang wu", 52},
        {"zhao liu", 26},
    }
 
    fmt.Println(people)
 
    sort.Sort(PersonWrapper{people, func (p, q *Person) bool {
        return q.Age < p.Age    // Age 递减排序
    }})
 
    fmt.Println(people)
    sort.Sort(PersonWrapper{people, func (p, q *Person) bool {
        return p.Name < q.Name    // Name 递增排序
    }})
 
    fmt.Println(people)
 
}

方法 2 将 [] Person 和比较的准则 cmp 封装在了一起,形成了 PersonWrapper 函数,然后在其上绑定 Len 、 Less 和 Swap 方法。 实际上 sort.Sort(pw) 排序的是 pw 中的 people, 这就是前面说的, go 的排序未必就是针对的一个数组或是 slice, 而可以是一个对象中的数组或是 slice 。

结构体排序方法 3

me 赶脚方法 2 已经很不错了, 唯一一个缺点是,在 main 中使用的时候暴露了 sort.Sort 的使用,还有就是 PersonWrapper 的构造。 为了让 main 中使用起来更为方便, me 们可以再简单的封装一下, 构造一个 SortPerson 方法, 如下:

package main
 
import (
    "fmt"
    "sort"
)
 
type Person struct {
    Name string    // 姓名
    Age  int    // 年纪
}
 
type PersonWrapper struct {
    people [] Person
    by func(p, q * Person) bool
}
 
type SortBy func(p, q *Person) bool
 
func (pw PersonWrapper) Len() int {    // 重写 Len() 方法
    return len(pw.people)
}
func (pw PersonWrapper) Swap(i, j int){     // 重写 Swap() 方法
    pw.people[i], pw.people[j] = pw.people[j], pw.people[i]
}
func (pw PersonWrapper) Less(i, j int) bool {    // 重写 Less() 方法
    return pw.by(&pw.people[i], &pw.people[j])
}
 
 
func SortPerson(people [] Person, by SortBy){    // SortPerson 方法
    sort.Sort(PersonWrapper{people, by})
}
 
func main() {
    people := [] Person{
        {"zhang san", 12},
        {"li si", 30},
        {"wang wu", 52},
        {"zhao liu", 26},
    }
 
    fmt.Println(people)
 
    sort.Sort(PersonWrapper{people, func (p, q *Person) bool {
        return q.Age < p.Age    // Age 递减排序
    }})
 
    fmt.Println(people)
 
    SortPerson(people, func (p, q *Person) bool {
        return p.Name < q.Name    // Name 递增排序
    })
 
    fmt.Println(people)
 
}

在方法 2 的基础上构造了 SortPerson 函数,使用的时候传过去一个 [] Person 和一个 cmp 函数。

结构体排序方法 4

下面是另外一个实现思路, 可以说是方法 1、 2 的变体。

package main
 
import (
    "fmt"
    "sort"
)
 
type Person struct {
    Name        string
    Weight      int
}
 
type PersonSlice []Person
 
func (s PersonSlice) Len() int  { return len(s) }
func (s PersonSlice) Swap(i, j int)     { s[i], s[j] = s[j], s[i] }
 
type ByName struct{ PersonSlice }    // 将 PersonSlice 包装起来到 ByName 中
 
func (s ByName) Less(i, j int) bool     { return s.PersonSlice[i].Name < s.PersonSlice[j].Name }    // 将 Less 绑定到 ByName 上
 
 
type ByWeight struct{ PersonSlice }    // 将 PersonSlice 包装起来到 ByWeight 中
func (s ByWeight) Less(i, j int) bool   { return s.PersonSlice[i].Weight < s.PersonSlice[j].Weight }    // 将 Less 绑定到 ByWeight 上
 
func main() {
    s := []Person{
        {"apple", 12},
        {"pear", 20},
        {"banana", 50},
        {"orange", 87},
        {"hello", 34},
        {"world", 43},
    }
 
    sort.Sort(ByWeight{s})
    fmt.Println("People by weight:")
    printPeople(s)
 
    sort.Sort(ByName{s})
    fmt.Println("\nPeople by name:")
    printPeople(s)
 
}
 
func printPeople(s []Person) {
    for _, o := range s {
        fmt.Printf("%-8s (%v)\n", o.Name, o.Weight)
    }
}

更多go语言知识请关注PHP中文网go语言教程栏目。

以上是go語言中的排序講解的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:cnblogs.com。如有侵權,請聯絡admin@php.cn刪除