首頁 >後端開發 >Python教學 >python之7進程執行緒與協程的詳解

python之7進程執行緒與協程的詳解

零下一度
零下一度原創
2017-07-19 16:07:302655瀏覽

前言:執行緒和進程的關係圖

  由下圖可知,在每個應用程式執行的過程中,都會去產生一個主進程和主執行緒來完成工作,當我們需要並發的執行的時候,就會透過主程序去產生一系列的子程序(然後透過子程序產生一系列的子執行緒)來使不同的cpu調用,達到並發的效果。但是要注意的是,在一般情況下每個進程之間是相互獨立的。

  GIL全域解釋器鎖在Python中是獨有的,java和c#中都沒有,他的作用主要是什麼?我們都知道程式的執行最小單元是線程,在cpu1通過進程來調用線程的時候(只是在cpu調用的時候),只能輪詢的去調用某個進程中的線程,線程並不能進行並發的執行,也就是說一個時刻每顆cpu只能透過一個行程中的一個執行緒來完成某項工作。

  在我們一般的程式中,如果沒有特意的創建進程和線程,那麼我們程式就是按照順序一步一步執行的,當我們創建了進程和線程之後,就會產生並發執行的效果。

  流程

    優點: 可同時利用多個cpu,進行多個操作

    : 重新開啟記憶體缺點,非常耗費資源

# #    個數: 一般和cpu顆數相同

    使用場所: 一般是計算密集型

##  線程

#    ##  線程

#    操作可實現並發執行

    缺點: 搶佔資源,切換上下文非常耗時

      個數: 一般依情況而定

    使用場所數: 一般依情況而定

    使用場所數: 一般依情況而定

   使用場所

## 

一.進程

  進程的定義

    進程(Process)是電腦中的程式關於某資料集合上的一次執行活動,是系統進行資源分配和調度的基本單位。其實進程就是程式執行的實例,程式放在那裡是不會執行的,只能透過創建進程來完成程式的操作。例如:我現在想去做飯,首先我拿起菜刀,然後我去切菜,之後開火,炒菜。做菜其實就是一個程序,我拿刀,切菜,開火,炒菜就可以看成是一個一個的進程,他們在程序的執行流中有序的執行從而完成了一個操作。

  1. 建立進程(Process類別)
  對於我們寫的一個程式而言,預設的都會有一個主進程和主執行緒來從上到小的去執行程式碼,如果一但遇到要去創建進程和線程,然後主進程就會創建進程和線程,(然後創建的子進程和子線程就會自己去執行他要的執行的程式碼),創建完成之後有兩種操作,一個就是等待子程序或子執行緒的操作完成之後在結束程序,另一種就是當我的主行程完成之後,就立刻結束程序,無論你的子行程或子執行緒有沒有完成。
# 在windows下做实验的话,第一句必须加上if __name__ == "__main__":# 创建进程,# 参数target后面的代表的是此进程要执行的函数名称# args后面跟的是一个元组,代表target后面函数所需要的参数p = multiprocessing.Process(target=foo, args=(1,))
    
    p.join(5)   # 当执行完此子进程之后再去执行其他的进程,参数5代表执行此子进程等待的最长时间,默认为s# daemon是指主进程是否要等待子进程完成之后再结束,默认是等待# True 代表不等待# False 代表等待p.daemon = True 
    p.start()   # 启动子进程
 1 # 下面这段代码显示结果为空,因为在主进程结束之后就结束程序了 2 # 并不会去执行foo函数 3 import multiprocessing 4 import time 5  6 def foo(args): 7     # 这是个要通过子进程执行的函数 8     time.sleep(3)   # 延迟三秒 9     print(args)10     11 if __name__ == "__main__":12     p = multiprocessing.Process(target=foo, args=(1,))13     p.daemon = True # 不等待子进程结束14     p.start()   
15 16 17 # 下面这段代码的执行结果为1 因为daemon的值为false,所以主进程要等待子进程执行完foo之后才会去结束程序18 import multiprocessing19 import time20 21 def foo(args):22     # 这是个要通过子进程执行的函数23     time.sleep(3)   # 延迟三秒24     print(args)25     26 if __name__ == "__main__":27     p = multiprocessing.Process(target=foo, args=(1,))28     p.daemon = False # 不等待子进程结束29     p.start()
#「daemon
##########################################################################################
# 当没有join的时候,输入结果为基本上是同时输出的123456789import multiprocessingimport timedef foo(args):# 这是个要通过子进程执行的函数time.sleep(1)print(args)if __name__ == "__main__":for i in range(10):
        p = multiprocessing.Process(target=foo, args=(i,))
        p.start()#有join的时候,他是一个一个输出的,因为join代表的就是当这个子进程执行完之后才会去执行其他的进程import multiprocessingimport timedef foo(args):# 这是个要通过子进程执行的函数time.sleep(1)print(args)if __name__ == "__main__":for i in range(10):
        p = multiprocessing.Process(target=foo, args=(i,))
        p.start()
        p.join(2)
######例子二join###################
# 下面这个代码不会输出任何值,当程序执行了1s之后就会结束原因是join默认等待的时间为1s中,但是你的子进程却需要10s的时间,所以子进程还没有执行完主进程就结束了import multiprocessingimport timedef foo(args):# 这是个要通过子进程执行的函数time.sleep(10)print(args)if __name__ == "__main__":
    p = multiprocessing.Process(target=foo, args=(1,))
    p.daemon = True
    p.start()
    p.join(1)
######例子三join###################################

  2. 进程池(pool模块)

    什么叫做进程池呢?通俗点就是装进程的容器,在我们写程序的时候,我们不可能来一个程序,我们就去创建一个进程,进程是非常耗费资源的,因此我们通过事先定义一个装进程的容器(进程的个数是固定的),当我们程序需要的时候就会自动的去进程池中区取,如果进程池中的子进程数被取完了,我们就只有等待其他的程序释放了之后我们才能够继续使用。

if __name__ == "__main__":# 创建进程池proc_pool = multiprocessing.Pool(5)# 以下两个都是使用进程池的方式# apply:他内部使用了join方法,每一个子进程进行了完了之后才会去进行下一个子进程的使用# apply_async:他内部没有使用join方法,因此是所有的子进程并发的执行    proc_pool.apply()
    proc_pool.apply_async()
 1 # 从结果可以看出来,每一个子进程完成了之后才会打印出最后的子进程创建完成 2 import multiprocessing 3 import time 4  5 def foo(s1): 6     time.sleep(1) 7     print(s1) 8 if __name__ == "__main__": 9     # 创建进程池,进程的个数为510     proc_pool = multiprocessing.Pool(5)11     for i in range(10):12         # 创建十个子进程,每个子进程都去执行foo函数,传入的参数为i13         proc_pool.apply(foo, args=(i, ))14     print("子进程创建完成")15 16 输出结果:17 018 119 220 321 422 523 624 725 826 927 子进程创建完成
事例一apply
# 结果是先打印了进程创建完毕,从执行结果可以看出来,apply_async函数会使所有的子进程并发执行,后面的join函数要使主进程等待子进程完成之后在关闭程序import multiprocessingimport time# 执行的函数def foo(s1):
    time.sleep(1)return s1# 回调函数def foo2(s1):print(s1)if __name__ == "__main__":# 创建进程池,进程的个数为5proc_pool = multiprocessing.Pool(5)for i in range(10):# 创建十个子进程,每个子进程都去执行foo函数,传入的参数为i,把foo函数的返回值当做参数给foo2,然后执行foo2函数proc_pool.apply_async(foo, args=(i, ), callback=foo2)print("子进程创建完成")# 关闭进程池    proc_pool.close()# 等待子进程执行完毕之后返回    proc_pool.join()

输出结果:
子进程创建完成
01
2
3
4
5
6
7
8
事例2 apply_aysnc

   3. 进程之间的共享

    进程之间本来是独立,互不影响的,如果实在想要在进程之间进行通信的话有两种方法。

      <1>. 数组

      <2>. manage模块创建特殊的数据类型

import multiprocessingimport multiprocessingdef f1(s1, dic):
    dic[s1] = s1if __name__ == "__main__":# 创建一个manage的对象manage = multiprocessing.Manager()# 通过manage创建一个特殊类型的dict,供进程之间进行使用dic = manage.dict()print("没有修改之前的dic:",dic)for i in range(10):
        p = multiprocessing.Process(target=f1, args=(i, dic))
        p.start()
        p.join()print("修改之后的dic:",dic)

结果:
没有修改之前的dic: {}
修改之后的dic: {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9}

 

二.线程

   线程是程序最下的执行单元,他本质上也是一个进程,只不过是把进程更加的细微化的一个东西,也是用来执行程序的。

  1. 创建线程

# 线程的创建和进程的创建都差不多,因为从形式上来将线程就是进程# 下面的方法和进程的方法是一样的,就是把daemon变成了setDaemon而已if __name__ == "__main__":# 创建线程foo函数为要用子线程执行的函数,args为传递的参数thread = threading.Thread(target=foo, args=(1, ))# 启动线程    thread.start()# 子线程等的最长时间thread.join(5)# 设置主进程完成之后是否要等待子线程完成,默认是不等待的thread.setDaemon(True)
 1 # 下面这段代码是没有结果的,因为线程和进程不太一样,线程默认是不等待子线程的 2 import threading 3 import time 4 # 执行的函数 5 def foo(s1): 6     time.sleep(1) 7     print(s1) 8  9 if __name__ == "__main__":10     thread = threading.Thread(target=foo, args=(1, ))11     thread.start()12 13 # 修改成下面这段代码,就可以显示结果了,14 import threading15 import time16 # 执行的函数17 def foo(s1):18     time.sleep(1)19     print(s1)20 21 if __name__ == "__main__":22     thread = threading.Thread(target=foo, args=(1, ))23     thread.setDaemon(False)24     thread.start()
事例一setDaemon
 1 import threading 2 import time 3  4 # 执行的函数 5 def foo(s1): 6     time.sleep(1) 7     print(s1) 8  9 if __name__ == "__main__":10     for i in range(5):11         thread = threading.Thread(target=foo, args=(i, ))12         thread.start()13         thread.join(2)
事例二join

  2. Rlock模块

    Rlock模块从名字就可以看出来是一个锁模块,我们都知道线程之间是内存共享的,因此当两个线程同时修改某个值的时候,就会出现脏值(也就是我们预期不到的值),因为我们不知道到底哪个线程修改的有效,因此这个模块就应运而生了,当我们想去修改某个值的时候,就可以用到锁模块,把值锁定起来

 1 # 其实这个例子看不出来数据的混乱。。。。 2 # 只是简单的说了一下rlock模块的使用方法 3 import threading 4 import time 5  6 # 创建一个全局变量,要运用线程对其进行修改 7 num = [] 8 # 创建一个锁对象 9 lock = threading.RLock()10 # 执行的函数11 def foo(s1):12     # 加锁13     # lock.acquire()14     global num15     num.append(s1)16     print(num)17     # 释放锁18     # lock.release()19 if __name__ == "__main__":20     for i in range(40):21         thread = threading.Thread(target=foo, args=(i, ))22         thread.start()23     print(num)
rlock

  3. event模块

    event模块其实就是暂停的意思,当我们使用了此模块之后,线程就会停在此处,当我们设置了相应的值之后,就会继续执行。

 1 import threading 2 import time 3  4 # 创建一个全局变量,要运用线程对其进行修改 5 num = [] 6 # 创建一个锁对象 7 lock = threading.RLock() 8 event = threading.Event() 9 # 执行的函数10 def foo(s1):11     # 加锁12     lock.acquire()13     # 线程在此暂停(红灯)14     event.wait()15     global num16     num.append(s1)17     print(num)18     # 释放锁19     lock.release()20 if __name__ == "__main__":21     for i in range(5):22         thread = threading.Thread(target=foo, args=(i, ))23         thread.start()24     event.clear()   # 设置为红灯25     inp = input("输入q继续:")26     if inp == 'q':27         # 如果输入的为q,就把event的等待状态改变,继续执行28         event.set() 
29 30 31 结果输出32 输入True继续:q33 [0]34 [0, 1]35 [0, 1, 2]36 [0, 1, 2, 3]37 [0, 1, 2, 3, 4]
event+lock之后的状态
 1 import threading 2 import time 3  4 # 创建一个全局变量,要运用线程对其进行修改 5 num = [] 6 # 创建一个锁对象 7 lock = threading.RLock() 8 event = threading.Event() 9 # 执行的函数10 def foo(s1):11     # 加锁12     # lock.acquire()13     # 线程在此暂停(红灯)14     event.wait()15     global num16     num.append(s1)17     print(num)18     # 释放锁19     # lock.release()20 if __name__ == "__main__":21     for i in range(5):22         thread = threading.Thread(target=foo, args=(i, ))23         thread.start()24     event.clear()   # 设置为红灯25     inp = input("输入q继续:")26     if inp == 'q':27         # 如果输入的为q,就把event的等待状态改变,继续执行28         event.set()29 30 输出结果:31 输入q继续:q32 [0]33 [0, 2]34 [0, 2, 1]35 [0, 2, 1, 4]36 [0, 2, 1, 4, 3]
event模型

  4. 生产者消费者模型(queue模块)

    生产者消费者模型其实说的就是队列,队列我们只需要记住先进先出就可以了。

# 导入队列的模块import queue# 创建一个队列,队列的长度最多为5obj = queue.Queue(5)# 从队列中获取值,如果队列为空,则等待obj.get()# 从队列中获取值,如果队列为空,则放弃取值(不等待)obj.get_nowait()# 给队列中上传一个值obj.put("value")

  5. 线程池

    在Python中默认没有创建线程池的方法,因此在此处总结了wupeiqi老师的两个方法,方法的地址如下  

    

    这段代码的有些地方是比较难懂的,主要的原因是之前写的代码都是顺序执行的,而对于线程和进程而言,都是可以并发执行的,因此对于执行流还是需要注意的。

 1 import queue 2 import threading 3 import time 4  5 class ThreadPool: 6     def __init__(self, max_num): 7         self.ThreadQueue = queue.Queue(max_num) 8         for i in range(max_num): 9             self.ThreadQueue.put(threading.Thread)10     def get_Thread(self):11         return self.ThreadQueue.get()12 13     def add_Thread(self):14         self.ThreadQueue.put(threading.Thread)15 16 def func(pool, args):17     time.sleep(2)18     print(args)19     pool.add_Thread()
线程池实现--简单的方法
  1 # -*- coding:utf-8 -*-  2 # zhou  3 # 2017/7/5  4   5 import threading  6 import queue  7 import time  8   9 # 列表退出标志位 10 StopEvent = object() 11  12 class ThreadPool: 13     def __init__(self, max_num): 14         # 创建一个空的队列用来存放任务而不是线程 15         self.q = queue.Queue() 16         # 设置空闲的线程数为0 17         self.free_list = [] 18         # 已经创建的线程数 19         self.generate_list = [] 20         # 创建线程的最大个数 21         self.max_num = max_num 22         # 创建任务列表为空 23         self.task = [] 24         self.terminal_flag = False 25  26     def apply(self, target, args, callback=None): 27         # 得到任务列表 28         task = (target, args, callback, ) 29         # print('***', args) 30         # 把任务列表加入队列中 31         self.q.put(task) 32         # 去执行 33         if len(self.free_list) == 0 and len(self.generate_list) < self.max_num: 34             # 如果没有空闲的线程并且创建的线程数小于最大线程数,就创建一个线程 35             self.generate_thread() 36  37     def generate_thread(self): 38         t = threading.Thread(target=self.run) 39         t.start() 40  41     def run(self): 42         current_thread = threading.currentThread 43         self.generate_list.append(current_thread) 44         event = self.q.get() 45         while event != StopEvent: 46             # 是任务,解开任务包,执行任务 47             func1, argument, func2 = event 48             # print("++",argument) 49             try: 50                 ret = func1(*argument) 51                 state = True 52             except Exception as e: 53                 state = False 54                 ret = e 55             if func2 is not None: 56                 try: 57                     func2(state, ret) 58                 except Exception as e: 59                     pass 60             if not self.terminal_flag: 61                 self.free_list.append(current_thread) 62                 event = self.q.get() 63                 self.free_list.remove(current_thread) 64             else: 65                 event = StopEvent 66         else: 67             # 不是任务,就移除 68             self.generate_list.remove(current_thread) 69  70     def close(self): 71         # StopEvent作为循环结束的标志,有多少个线程就会给他创建多少个标志位 72         num = len(self.generate_list) 73         while num: 74             self.q.put(StopEvent) 75             num -= 1 76  77     def terminal(self): 78         self.terminal_flag = True 79         while self.generate_list: 80             self.q.put(StopEvent) 81         # self.close() 82         self.q.empty() 83 # 执行函数 84 def foo(s1): 85     # time.sleep(0.5) 86     print(s1) 87 # 回调函数 88 def f2(state, s2): 89     print(s2) 90  91 if __name__ == "__main__": 92     # 创建一个线程池 93     pool = ThreadPool(5) 94     for i in range(40): 95         # 应用线程池 96         # print('___',i) 97         pool.apply(target=foo, args=(i, )) 98     time.sleep(4) 99     pool.terminal()100 101
线程池实现--复杂的方法

 

三.协程

  协程是什么呢?协程其实就是微线程,如下图,协程一般用在web页面请求上面,使用协程要导入模块gevent,下面贴一个简单的使用例子

 1 # -*- coding:utf-8 -*- 2 # zhou 3 # 2017/7/5 4 import gevent 5 import requests 6  7 def f1(url): 8     requests.get(url) 9 10 gevent.joinall([11     gevent.spawn(f1, ""),12     gevent.spawn(f1, ""),13 ]14 )
协程使用方法

 

四. 上下文切换(contextlib)

  其实这个上下文切换和装饰器有点类似,也是在一个操作的前后在去加上一点操作。

  下面代码执行流程

  

import contextlib

@contextlib.contextmanagerdef file_open(file_name, mode):
    f = open(file_name, mode)try:yield ffinally:
        f.close()

with file_open('te', 'r') as obj_f:print(obj_f.read())

 

以上是python之7進程執行緒與協程的詳解的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn