1.在多執行緒下:鎖的掛起和復原等過程存在著很大的開銷(及時現代的jvm會判斷何時使用掛起,何時自旋等待)
2.volatile:輕量級級別的同步機制,但是不能用於構建原子複合操作
因此:需要有一種方式,在管理執行緒之間的競爭時有一種粒度更細的方式,類似與volatile的機制,同時也要支援原子更新操作
#獨佔鎖是一種悲觀的技術--它假設最壞的情況,所以每個線程是獨佔的
而CAS比較並交換:compareAndSwap/Set(A,B):我們認為內存處值是A,如果是A,將其修改為B,否則不進行操作;傳回記憶體處的原始值或是否修改成功
如:模擬CAS運算
//模拟的CASpublic class SimulatedCAS {private int value;public synchronized int get() {return value; }//CAS操作public synchronized int compareAndSwap(int expectedValue, int newValue) {int oldValue = value;if (oldValue == expectedValue) { value = newValue; }return oldValue; }public synchronized boolean compareAndSet(int expectedValue, int newValue) {return (expectedValue == compareAndSwap(expectedValue, newValue)); } }//典型使用场景public class CasCounter {private SimulatedCAS value;public int getValue() {return value.get(); }public int increment() {int v;do { v = value.get(); } while { (v != value.compareAndSwap(v, v + 1)); }return v + 1; } }
#
JAVA提供了CAS的操作
原子狀態類別:AtomicXXX的CAS方法
# 原子狀態類別:AtomicXXX的CAS方法
public class CasNumberRange {private static class IntPair {// INVARIANT: lower <= upperfinal int lower; //将值定义为不可变域final int upper; //将值定义为不可变域public IntPair(int lower, int upper) {this.lower = lower;this.upper = upper; } }private final AtomicReference<IntPair> values = new AtomicReference<IntPair>(new IntPair(0, 0)); //封装对象public int getLower() {return values.get().lower; }public int getUpper() {return values.get().upper; }public void setLower(int i) {while (true) { IntPair oldv = values.get();if (i > oldv.upper) {throw new IllegalArgumentException("Can't set lower to " + i + " > upper"); } IntPair newv = new IntPair(i, oldv.upper); //属性为不可变域,则每次更新新建对象if (values.compareAndSet(oldv, newv)) { //原子更新,如果在过程中有线程修改了,则其他线程不会更新成功,因为oldv与内存处值就不同了return; } } }//同上public void setUpper(int i) {while (true) { IntPair oldv = values.get();if (i < oldv.lower)throw new IllegalArgumentException("Can't set upper to " + i + " < lower"); IntPair newv = new IntPair(oldv.lower, i);if (values.compareAndSet(oldv, newv))return; } } }效能問題:使用原子變數在中低並發(競爭)下,比使用鎖定速度快,一般情況下是比鎖定速度快的 #四、非阻塞演算法 許多常見的資料結構中都可以使用非阻塞演算法 非阻塞演算法:在多執行緒中,工作是否成功有不確定性,需要循環執行,並且透過CAS進行原子運算 1、上面的CasNumberRange 2、堆疊的非阻塞演算法:只儲存頭部指針,只有一個狀態
//栈实现的非阻塞算法:单向链表public class ConcurrentStack <E> { AtomicReference<Node<E>> top = new AtomicReference<Node<E>>();public void push(E item) { Node<E> newHead = new Node<E>(item); Node<E> oldHead;do { oldHead = top.get(); newHead.next = oldHead; } while (!top.compareAndSet(oldHead, newHead));//CAS操作:原子更新操作,循环判断,非阻塞 }public E pop() { Node<E> oldHead; Node<E> newHead;do { oldHead = top.get();if (oldHead == null) {return null; } newHead = oldHead.next; } while (!top.compareAndSet(oldHead, newHead));//CAS操作:原子更新操作,循环判断,非阻塞return oldHead.item; }private static class Node <E> {public final E item;public Node<E> next;public Node(E item) {this.item = item; } } }
3、鍊錶的非阻塞演算法:頭部和尾部的快速訪問,保存兩個狀態,更加複雜
public class LinkedQueue <E> {private static class Node <E> {final E item;final AtomicReference<LinkedQueue.Node<E>> next;public Node(E item, LinkedQueue.Node<E> next) {this.item = item;this.next = new AtomicReference<LinkedQueue.Node<E>>(next); } }private final LinkedQueue.Node<E> dummy = new LinkedQueue.Node<E>(null, null);private final AtomicReference<LinkedQueue.Node<E>> head = new AtomicReference<LinkedQueue.Node<E>>(dummy);private final AtomicReference<LinkedQueue.Node<E>> tail = new AtomicReference<LinkedQueue.Node<E>>(dummy); //保存尾节点public boolean put(E item) { LinkedQueue.Node<E> newNode = new LinkedQueue.Node<E>(item, null);while (true) { LinkedQueue.Node<E> curTail = tail.get(); LinkedQueue.Node<E> tailNext = curTail.next.get();if (curTail == tail.get()) {if (tailNext != null) {// 处于中间状态,更新尾节点为当前尾节点的next tail.compareAndSet(curTail, tailNext); } else {// 将当前尾节点的next 设置为新节点:链表if (curTail.next.compareAndSet(null, newNode)) {/** * 此处即为中间状态,虽然在这里进行了两次原子操作,整体不是原子的,但是通过算法保证了安全: * 原因是处于中间状态时,如果有其他线程进来操作,则上面那个if将执行; * 上面if的操作是来帮助当前线程完成更新尾节点操作,而当前线程的更新就会失败返回,最终则是更新成功 */// 链接成功,尾节点已经改变,则将当前尾节点,设置为新节点 tail.compareAndSet(curTail, newNode);return true; } } } } } }3.原子域更新器
上面的邏輯,實作了鍊錶的非阻塞演算法,使用Node來保存頭結點和尾節點 在實際的ConcurrentLinkedQueue# 在實際的ConcurrentLinkedQueue中使用的是基於反射的
AtomicReferenceFiledUpdater五、ABA問題
## CAS運算中容易出現的問題: CAS運算中容易出現的問題: 是否為A,是的話就繼續更新操作換成B; 但是如果一個線程將值A改為C,然後又改回A,此時,原線程將判斷A=A成功執行更新操作; 如果把A改為C,然後又改回A的操作,也需要視為變化,則需要對演算法進行優化 解決:新增版本號,每次更新操作要更新版本號,即使值是一樣的###### ####### ###以上是java並發程式設計(8)原子變數和非阻塞的同步機制的詳細內容。更多資訊請關注PHP中文網其他相關文章!