首頁  >  文章  >  後端開發  >  利用Python實現非同步代理爬蟲及代理池方法

利用Python實現非同步代理爬蟲及代理池方法

高洛峰
高洛峰原創
2017-03-19 09:28:322596瀏覽

本文主要介紹了Python實現非同步代理爬蟲及代理池的相關知識,具有很好的參考價值,下面跟著小編一起來看下吧

使用python asyncio實現了一個非同步代理池,根據規則爬取代理網站上的免費代理,在驗證其有效後存入redis中,定期擴展代理的數量並檢驗池中代理的有效性,移除失效的代理。同時用aiohttp實作了一個server,其他的程式可以透過存取對應的url來從代理池取得代理。

原始碼

https://github.com/arrti/proxypool

環境

  • Python 3.5+

  • #Redis

  • ##PhantomJS(可選)

  • Supervisord(可選)

因為程式碼中大量使用了asyncio的async和await語法,它們是在Python3.5中才提供的,所以最好使用Python3.5及以上的版本,我使用的是Python3.6。

依賴

  • #redis

  • aiohttp

  • bs4

  • lxml

  • #requests

  • ##selenium
  • #selenium套件主要是用來操作PhantomJS的。

下面來說明程式碼。

1. 爬蟲部分

核心程式碼

async def start(self):
 for rule in self._rules:
 parser = asyncio.ensure_future(self._parse_page(rule)) # 根据规则解析页面来获取代理
 logger.debug('{0} crawler started'.format(rule.rule_name))
 if not rule.use_phantomjs:
  await page_download(ProxyCrawler._url_generator(rule), self._pages, self._stop_flag) # 爬取代理网站的页面
 else:
  await page_download_phantomjs(ProxyCrawler._url_generator(rule), self._pages,
rule.phantomjs_load_flag, self._stop_flag) # 使用PhantomJS爬取
 await self._pages.join()
 parser.cancel()
 logger.debug('{0} crawler finished'.format(rule.rule_name))
上面的核心程式碼其實是一個用asyncio.Queue實現的生產-消費者

模型

,以下是該模型的一個簡單實作:

import asyncio
from random import random
async def produce(queue, n):
 for x in range(1, n + 1):
 print('produce ', x)
 await asyncio.sleep(random())
 await queue.put(x) # 向queue中放入item
async def consume(queue):
 while 1:
 item = await queue.get() # 等待从queue中获取item
 print('consume ', item)
 await asyncio.sleep(random())
 queue.task_done() # 通知queue当前item处理完毕 
async def run(n):
 queue = asyncio.Queue()
 consumer = asyncio.ensure_future(consume(queue))
 await produce(queue, n) # 等待生产者结束
 await queue.join() # 阻塞直到queue不为空
 consumer.cancel() # 取消消费者任务,否则它会一直阻塞在get方法处
def aio_queue_run(n):
 loop = asyncio.get_event_loop()
 try:
 loop.run_until_complete(run(n)) # 持续运行event loop直到任务run(n)结束
 finally:
 loop.close()
if name == 'main':
 aio_queue_run(5)
運行上面的程式碼,一個可能的輸出如下:

produce 1
produce 2
consume 1
produce 3
produce 4
consume 2
produce 5
consume 3
consume 4
consume 5

爬取頁面

async def page_download(urls, pages, flag):
 url_generator = urls
 async with aiohttp.ClientSession() as session:
 for url in url_generator:
  if flag.is_set():
  break
  await asyncio.sleep(uniform(delay - 0.5, delay + 1))
  logger.debug('crawling proxy web page {0}'.format(url))
  try:
  async with session.get(url, headers=headers, timeout=10) as response:
   page = await response.text()
   parsed = html.fromstring(decode_html(page)) # 使用bs4来辅助lxml解码网页:http://lxml.de/elementsoup.html#Using only the encoding detection
   await pages.put(parsed)
   url_generator.send(parsed) # 根据当前页面来获取下一页的地址
  except StopIteration:
  break
  except asyncio.TimeoutError:
  logger.error('crawling {0} timeout'.format(url))
  continue # TODO: use a proxy
  except Exception as e:
  logger.error(e)
使用aiohttp實作的網頁爬取

函數

,大部分代理網站都可以使用上面的方法來爬取,對於使用js動態產生頁面的網站可以使用selenium控制PhantomJS來爬取-本專案對爬蟲的效率要求不高,代理網站的更新頻率是有限的,不需要頻繁的爬取,完全可以使用PhantomJS。

解析代理程式最簡單的莫過於用

xpath

來解析代理程式了,使用Chrome瀏覽器的話,直接透過右鍵就能獲得選取的頁面元素的xpath: 

利用Python實現非同步代理爬蟲及代理池方法#安裝Chrome的擴充「XPath Helper」就可以直接在頁面上運作和調試xpath,十分方便:

 

利用Python實現非同步代理爬蟲及代理池方法BeautifulSoup不支援xpath,使用lxml來解析頁面,程式碼如下:

async def _parse_proxy(self, rule, page):
 ips = page.xpath(rule.ip_xpath) # 根据xpath解析得到list类型的ip地址集合
 ports = page.xpath(rule.port_xpath) # 根据xpath解析得到list类型的ip地址集合
 if not ips or not ports:
 logger.warning('{2} crawler could not get ip(len={0}) or port(len={1}), please check the xpaths or network'.
  format(len(ips), len(ports), rule.rule_name))
 return
 proxies = map(lambda x, y: '{0}:{1}'.format(x.text.strip(), y.text.strip()), ips, ports)
 if rule.filters: # 根据过滤字段来过滤代理,如“高匿”、“透明”等
 filters = []
 for i, ft in enumerate(rule.filters_xpath):
  field = page.xpath(ft)
  if not field:
  logger.warning('{1} crawler could not get {0} field, please check the filter xpath'.
   format(rule.filters[i], rule.rule_name))
  continue
  filters.append(map(lambda x: x.text.strip(), field))
 filters = zip(*filters)
 selector = map(lambda x: x == rule.filters, filters)
 proxies = compress(proxies, selector)
for proxy in proxies:
await self._proxies.put(proxy) # 解析后的代理放入asyncio.Queue中

#爬蟲規則網站爬取、代理解析、濾等等操作的規則都是由各個代理網站的規則類別定義的,使用元類別和基底類別來管理規則類別。基底類別定義如下:

class CrawlerRuleBase(object, metaclass=CrawlerRuleMeta):
 start_url = None
 page_count = 0
 urls_format = None
 next_page_xpath = None
 next_page_host = ''
 use_phantomjs = False
 phantomjs_load_flag = None
 filters = ()
 ip_xpath = None
 port_xpath = None
 filters_xpath = ()

各個參數的意義如下:

start_url

(必要)爬蟲的起始頁。

ip_xpath

(必要)爬取IP的xpath規則。

port_xpath

(必要)爬取連接埠號碼的xpath規則。

page_count

爬取的頁面數量。

urls_format

頁面位址的格式

字串

,透過urls_format.format(start_url, n)來產生第n頁的位址,這是比較常見的頁面位址格式。

next_page_xpath

next_page_host<p>由xpath规则来获取下一页的url(常见的是相对路径),结合host得到下一页的地址:next_page_host + url。</p> <p><code>use_phantomjs, phantomjs_load_flag

use_phantomjs用于标识爬取该网站是否需要使用PhantomJS,若使用,需定义phantomjs_load_flag(网页上的某个元素,str类型)作为PhantomJS页面加载完毕的标志。

filters

过滤字段集合,可迭代类型。用于过滤代理。

爬取各个过滤字段的xpath规则,与过滤字段按顺序一一对应。

元类CrawlerRuleMeta用于管理规则类的定义,如:如果定义use_phantomjs=True,则必须定义phantomjs_load_flag,否则会抛出异常,不在此赘述。

目前已经实现的规则有西刺代理、快代理、360代理、66代理和 秘密代理。新增规则类也很简单,通过继承CrawlerRuleBase来定义新的规则类YourRuleClass,放在proxypool/rules目录下,并在该目录下的init.py中添加from . import YourRuleClass(这样通过CrawlerRuleBase.subclasses()就可以获取全部的规则类了),重启正在运行的proxy pool即可应用新的规则。

2. 检验部分

免费的代理虽然多,但是可用的却不多,所以爬取到代理后需要对其进行检验,有效的代理才能放入代理池中,而代理也是有时效性的,还要定期对池中的代理进行检验,及时移除失效的代理。

这部分就很简单了,使用aiohttp通过代理来访问某个网站,若超时,则说明代理无效。

async def validate(self, proxies):
 logger.debug(&#39;validator started&#39;)
 while 1:
 proxy = await proxies.get()
 async with aiohttp.ClientSession() as session:
  try:
  real_proxy = &#39;http://&#39; + proxy
  async with session.get(self.validate_url, proxy=real_proxy, timeout=validate_timeout) as resp:
   self._conn.put(proxy)
  except Exception as e:
  logger.error(e)
 proxies.task_done()

3. server部分

使用aiohttp实现了一个web server,启动后,访问http://host:port即可显示主页:

利用Python實現非同步代理爬蟲及代理池方法

  • 访问http://host:port/get来从代理池获取1个代理,如:'127.0.0.1:1080';

  • 访问http://host:port/get/n来从代理池获取n个代理,如:"['127.0.0.1:1080', '127.0.0.1:443', '127.0.0.1:80']";

  • 访问http://host:port/count来获取代理池的容量,如:'42'。

因为主页是一个静态的html页面,为避免每来一个访问主页的请求都要打开、读取以及关闭该html文件的开销,将其缓存到了redis中,通过html文件的修改时间来判断其是否被修改过,如果修改时间与redis缓存的修改时间不同,则认为html文件被修改了,则重新读取文件,并更新缓存,否则从redis中获取主页的内容。

返回代理是通过aiohttp.web.Response(text=ip.decode('utf-8'))实现的,text要求str类型,而从redis中获取到的是bytes类型,需要进行转换。返回的多个代理,使用eval即可转换为list类型。

返回主页则不同,是通过aiohttp.web.Response(body=main_page_cache, content_type='text/html') ,这里body要求的是bytes类型,直接将从redis获取的缓存返回即可,conten_type='text/html'必不可少,否则无法通过浏览器加载主页,而是会将主页下载下来——在运行官方文档中的示例代码的时候也要注意这点,那些示例代码基本上都没有设置content_type。

这部分不复杂,注意上面提到的几点,而关于主页使用的静态资源文件的路径,可以参考之前的博客《aiohttp之添加静态资源路径》。

4. 运行

将整个代理池的功能分成了3个独立的部分:

proxypool

定期检查代理池容量,若低于下限则启动代理爬虫并对代理检验,通过检验的爬虫放入代理池,达到规定的数量则停止爬虫。

proxyvalidator

用于定期检验代理池中的代理,移除失效代理。

proxyserver

启动server。

这3个独立的任务通过3个进程来运行,在Linux下可以使用supervisod来=管理这些进程,下面是supervisord的配置文件示例:

; supervisord.conf
[unix_http_server]
file=/tmp/supervisor.sock 

[inet_http_server]  
port=127.0.0.1:9001 

[supervisord]
logfile=/tmp/supervisord.log 
logfile_maxbytes=5MB 
logfile_backups=10  
loglevel=debug  
pidfile=/tmp/supervisord.pid 
nodaemon=false  
minfds=1024   
minprocs=200   

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

[supervisorctl]
serverurl=unix:///tmp/supervisor.sock

[program:proxyPool]
command=python /path/to/ProxyPool/run_proxypool.py  
redirect_stderr=true
stdout_logfile=NONE

[program:proxyValidator]
command=python /path/to/ProxyPool/run_proxyvalidator.py
redirect_stderr=true  
stdout_logfile=NONE

[program:proxyServer]
command=python /path/to/ProxyPool/run_proxyserver.py
autostart=false
redirect_stderr=true  
stdout_logfile=NONE

因为项目自身已经配置了日志,所以这里就不需要再用supervisord捕获stdout和stderr了。通过supervisord -c supervisord.conf启动supervisord,proxyPool和proxyServer则会随之自动启动,proxyServer需要手动启动,访问http://127.0.0.1:9001即可通过网页来管理这3个进程了:

利用Python實現非同步代理爬蟲及代理池方法

supervisod的官方文件說目前(版本3.3.1)不支援python3,但是我在使用過程中沒有發現什麼問題,可能也是由於我並沒有使用supervisord的複雜功能,只是把它當作了一個簡單的進程狀態監控和啟動停止工具了。

以上是利用Python實現非同步代理爬蟲及代理池方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn