這篇文章主要介紹了深入理解NumPy簡明教程(二、數組1),NumPy數組是一個多維數組對象,具有一定的參考價值,感興趣的小伙伴們可以參考一下。
目前我的工作是將NumPy引入Pyston(一款Dropbox實作的Python編譯器/解譯器)。在工作過程中,我深入接觸了NumPy原始碼,了解其實作並提交了PR修復NumPy的bug。在與NumPy原始碼以及NumPy開發者打交道的過程中,我發現當今中文NumPy教程大部分都是翻譯或參考英文文檔,因此導致了許多疏漏。例如NumPy數組中的broadcast功能,幾乎所有中文文件都翻譯為「廣播」。而NumPy的開發者之一,回覆到「broadcast is a compound -- native English speakers can see that it's " broad" + "cast" = "cast (scatter, distribute) broadly, I guess "cast (scatter, distribute) broadly" probably is closer to the meaning(NumPy中的含義)"。有鑑於此,我打算啟動一個項目,以我對NumPy使用以及源碼層面的了解編寫一個系列的教程。 #NumPy數組
NumPy數組是一個多維數組對象,稱為ndarray。
#描述這些資料的元資料
大部分運算只針對於元數據,而不改變底層實際的資料。 #關於NumPy數組有幾點必需了解的:
NumPy數組的下標從0開始。元素的型別必須是相同的。
在詳細介紹NumPy陣列之前。類推。每個元素又是一個一維數組。 ,就是數組的維數。 (即陣列軸的個數),等於秩。維度上大小的整數元組。##ndarray.size:陣列元素的總個數,等於shape屬性中元組元素的乘積。
先來介紹建立陣列。創建數組的方法有很多。如可以使用array函數從常規的Python列表和元組創造數組。所建立的數組類型由原始序列中的元素類型推導出來。
>>> from numpy import * >>> a = array( [2,3,4] ) >>> a array([2, 3, 4]) >>> a.dtype dtype('int32') >>> b = array([1.2, 3.5, 5.1]) >>> b.dtype dtype('float64')
使用array函數建立時,參數必須是由方括號括起來的列表,而不能使用多個數值作為參數呼叫array。
>>> a = array(1,2,3,4) # 错误 >>> a = array([1,2,3,4]) # 正确
>>> b = array( [ (1.5,2,3), (4,5,6) ] ) >>> b array([[ 1.5, 2. , 3. ], [ 4. , 5. , 6. ]])
可以在建立時明確指定數組中元素的類型
>>> c = array( [ [1,2], [3,4] ], dtype=complex) >>> c array([[ 1.+0.j, 2.+0.j], [ 3.+0.j, 4.+0.j]])
>>> d = zeros((3,4)) >>> d.dtype dtype('float64') >>> d array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> d.dtype.itemsize 8
也可以自己制定陣列中元素的型別
>>> ones( (2,3,4), dtype=int16 ) #手动指定数组中元素类型 array([[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]], dtype=int16) >>> empty((2,3)) array([[ 2.65565858e-316, 0.00000000e+000, 0.00000000e+000], [ 0.00000000e+000, 0.00000000e+000, 0.00000000e+000]])
NumPy提供一个类似arange的函数返回一个数列形式的数组:
>>> arange(10, 30, 5) array([10, 15, 20, 25])
以10开始,差值为5的等差数列。该函数不仅接受整数,还接受浮点参数:
>>> arange(0,2,0.5) array([ 0. , 0.5, 1. , 1.5])
当arange使用浮点数参数时,由于浮点数精度有限,通常无法预测获得的元素个数。因此,最好使用函数linspace去接收我们想要的元素个数来代替用range来指定步长。linespace用法如下,将在通用函数一节中详细介绍。
>>> numpy.linspace(-1, 0, 5) array([-1. , -0.75, -0.5 , -0.25, 0. ])
数组中的元素是通过下标来访问的,可以通过方括号括起一个下标来访问数组中单一一个元素,也可以以切片的形式访问数组中多个元素。关于切片访问,将在切片一节介绍。
知识点:NumPy中的数据类型
对于科学计算来说,Python中自带的整型、浮点型和复数类型远远不够,因此NumPy中添加了许多数据类型。如下:
NumPy中的基本数据类型
名称 | 描述 |
bool | 用一个字节存储的布尔类型(True或False) |
inti | 由所在平台决定其大小的整数(一般为int32或int64) |
int8 | 一个字节大小,-128 至 127 |
int16 | 整数,-32768 至 32767 |
int32 | 整数,-2 ** 31 至 2 ** 32 -1 |
int64 | 整数,-2 ** 63 至 2 ** 63 - 1 |
uint8 | 无符号整数,0 至 255 |
uint16 | 无符号整数,0 至 65535 |
uint32 | 无符号整数,0 至 2 ** 32 - 1 |
uint64 | 无符号整数,0 至 2 ** 64 - 1 |
float16 | 半精度浮点数:16位,正负号1位,指数5位,精度10位 |
float32 | 单精度浮点数:32位,正负号1位,指数8位,精度23位 |
float64或float | 双精度浮点数:64位,正负号1位,指数11位,精度52位 |
complex64 | 复数,分别用两个32位浮点数表示实部和虚部 |
complex128或complex | 复数,分别用两个64位浮点数表示实部和虚部 |
NumPy类型转换方式如下:
>>> float64(42) 42.0 >>> int8(42.0) 42 >>> bool(42) True >>> bool(42.0) True >>> float(True) 1.0
许多函数的参数中可以指定参数的类型,当然,这个类型参数是可选的。如下:
>>> arange(7, dtype=uint16) array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)
输出数组
当输出一个数组时,NumPy以特定的布局用类似嵌套列表的形式显示:
第一行从左到右输出
每行依次自上而下输出
每个切片通过一个空行与下一个隔开
一维数组被打印成行,二维数组成矩阵,三维数组成矩阵列表。
>>> a = arange(6) # 1d array >>> print a [0 1 2 3 4 5] >>> b = arange(12).reshape(4,3) # 2d array >>> print b [[ 0 1 2] [ 3 4 5] [ 6 7 8] [ 9 10 11]] >>> c = arange(24).reshape(2,3,4) # 3d array >>> print c [[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]]
reshape将在下一篇文章中介绍
如果一个数组太长,则NumPy自动省略中间部分而只打印两端的数据:
>>> print arange(10000) [ 0 1 2 ..., 9997 9998 9999] >>> print arange(10000).reshape(100,100) [[ 0 1 2 ..., 97 98 99] [ 100 101 102 ..., 197 198 199] [ 200 201 202 ..., 297 298 299] ..., [9700 9701 9702 ..., 9797 9798 9799] [9800 9801 9802 ..., 9897 9898 9899] [9900 9901 9902 ..., 9997 9998 9999]]
可通过设置printoptions参数来禁用NumPy的这种行为并强制打印整个数组。
set_printoptions(threshold='nan')
这样,输出时数组的所有元素都会显示出来。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持PHP中文网。
更多深入理解NumPy简明教程---数组1相关文章请关注PHP中文网!