首頁  >  文章  >  php教程  >  PHP+JS+rsa資料加密傳輸實作程式碼

PHP+JS+rsa資料加密傳輸實作程式碼

高洛峰
高洛峰原創
2016-12-30 09:19:502307瀏覽

JS端代码: 

//文件base64.js: 
var b64map="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; 
var b64pad="="; 
function hex2b64(h) { 
var i; 
var c; 
var ret = ""; 
for(i = 0; i+3 <= h.length; i+=3) { 
c = parseInt(h.substring(i,i+3),16); 
ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63); 
} 
if(i+1 == h.length) { 
c = parseInt(h.substring(i,i+1),16); 
ret += b64map.charAt(c << 2); 
} 
else if(i+2 == h.length) { 
c = parseInt(h.substring(i,i+2),16); 
ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4); 
} 
while((ret.length & 3) > 0) ret += b64pad; 
return ret; 
} 
// convert a base64 string to hex 
function b64tohex(s) { 
var ret = "" 
var i; 
var k = 0; // b64 state, 0-3 
var slop; 
for(i = 0; i < s.length; ++i) { 
if(s.charAt(i) == b64pad) break; 
v = b64map.indexOf(s.charAt(i)); 
if(v < 0) continue; 
if(k == 0) { 
ret += int2char(v >> 2); 
slop = v & 3; 
k = 1; 
} 
else if(k == 1) { 
ret += int2char((slop << 2) | (v >> 4)); 
slop = v & 0xf; 
k = 2; 
} 
else if(k == 2) { 
ret += int2char(slop); 
ret += int2char(v >> 2); 
slop = v & 3; 
k = 3; 
} 
else { 
ret += int2char((slop << 2) | (v >> 4)); 
ret += int2char(v & 0xf); 
k = 0; 
} 
} 
if(k == 1) 
ret += int2char(slop << 2); 
return ret; 
} 
// convert a base64 string to a byte/number array 
function b64toBA(s) { 
//piggyback on b64tohex for now, optimize later 
var h = b64tohex(s); 
var i; 
var a = new Array(); 
for(i = 0; 2*i < h.length; ++i) { 
a[i] = parseInt(h.substring(2*i,2*i+2),16); 
} 
return a; 
} 
#文件jsbn.js 
// Copyright (c) 2005 Tom Wu 
// All Rights Reserved. 
// See "LICENSE" for details. 
// Basic JavaScript BN library - subset useful for RSA encryption. 
// Bits per digit 
var dbits; 
// JavaScript engine analysis 
var canary = 0xdeadbeefcafe; 
var j_lm = ((canary&0xffffff)==0xefcafe); 
// (public) Constructor 
function BigInteger(a,b,c) { 
if(a != null) 
if("number" == typeof a) this.fromNumber(a,b,c); 
else if(b == null && "string" != typeof a) this.fromString(a,256); 
else this.fromString(a,b); 
} 
// return new, unset BigInteger 
function nbi() { return new BigInteger(null); } 
// am: Compute w_j += (x*this_i), propagate carries, 
// c is initial carry, returns final carry. 
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue 
// We need to select the fastest one that works in this environment. 
// am1: use a single mult and divide to get the high bits, 
// max digit bits should be 26 because 
// max internal value = 2*dvalue^2-2*dvalue (< 2^53) 
function am1(i,x,w,j,c,n) { 
while(--n >= 0) { 
var v = x*this[i++]+w[j]+c; 
c = Math.floor(v/0x4000000); 
w[j++] = v&0x3ffffff; 
} 
return c; 
} 
// am2 avoids a big mult-and-extract completely. 
// Max digit bits should be <= 30 because we do bitwise ops 
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) 
function am2(i,x,w,j,c,n) { 
var xl = x&0x7fff, xh = x>>15; 
while(--n >= 0) { 
var l = this[i]&0x7fff; 
var h = this[i++]>>15; 
var m = xh*l+h*xl; 
l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); 
c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); 
w[j++] = l&0x3fffffff; 
} 
return c; 
} 
// Alternately, set max digit bits to 28 since some 
// browsers slow down when dealing with 32-bit numbers. 
function am3(i,x,w,j,c,n) { 
var xl = x&0x3fff, xh = x>>14; 
while(--n >= 0) { 
var l = this[i]&0x3fff; 
var h = this[i++]>>14; 
var m = xh*l+h*xl; 
l = xl*l+((m&0x3fff)<<14)+w[j]+c; 
c = (l>>28)+(m>>14)+xh*h; 
w[j++] = l&0xfffffff; 
} 
return c; 
} 
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { 
BigInteger.prototype.am = am2; 
dbits = 30; 
} 
else if(j_lm && (navigator.appName != "Netscape")) { 
BigInteger.prototype.am = am1; 
dbits = 26; 
} 
else { // Mozilla/Netscape seems to prefer am3 
BigInteger.prototype.am = am3; 
dbits = 28; 
} 
BigInteger.prototype.DB = dbits; 
BigInteger.prototype.DM = ((1<<dbits)-1); 
BigInteger.prototype.DV = (1<<dbits); 
var BI_FP = 52; 
BigInteger.prototype.FV = Math.pow(2,BI_FP); 
BigInteger.prototype.F1 = BI_FP-dbits; 
BigInteger.prototype.F2 = 2*dbits-BI_FP; 
// Digit conversions 
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; 
var BI_RC = new Array(); 
var rr,vv; 
rr = "0".charCodeAt(0); 
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; 
rr = "a".charCodeAt(0); 
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; 
rr = "A".charCodeAt(0); 
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; 
function int2char(n) { return BI_RM.charAt(n); } 
function intAt(s,i) { 
var c = BI_RC[s.charCodeAt(i)]; 
return (c==null)?-1:c; 
} 
// (protected) copy this to r 
function bnpCopyTo(r) { 
for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; 
r.t = this.t; 
r.s = this.s; 
} 
// (protected) set from integer value x, -DV <= x < DV 
function bnpFromInt(x) { 
this.t = 1; 
this.s = (x<0)?-1:0; 
if(x > 0) this[0] = x; 
else if(x < -1) this[0] = x+DV; 
else this.t = 0; 
} 
// return bigint initialized to value 
function nbv(i) { var r = nbi(); r.fromInt(i); return r; } 
// (protected) set from string and radix 
function bnpFromString(s,b) { 
var k; 
if(b == 16) k = 4; 
else if(b == 8) k = 3; 
else if(b == 256) k = 8; // byte array 
else if(b == 2) k = 1; 
else if(b == 32) k = 5; 
else if(b == 4) k = 2; 
else { this.fromRadix(s,b); return; } 
this.t = 0; 
this.s = 0; 
var i = s.length, mi = false, sh = 0; 
while(--i >= 0) { 
var x = (k==8)?s[i]&0xff:intAt(s,i); 
if(x < 0) { 
if(s.charAt(i) == "-") mi = true; 
continue; 
} 
mi = false; 
if(sh == 0) 
this[this.t++] = x; 
else if(sh+k > this.DB) { 
this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; 
this[this.t++] = (x>>(this.DB-sh)); 
} 
else 
this[this.t-1] |= x<<sh; 
sh += k; 
if(sh >= this.DB) sh -= this.DB; 
} 
if(k == 8 && (s[0]&0x80) != 0) { 
this.s = -1; 
if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; 
} 
this.clamp(); 
if(mi) BigInteger.ZERO.subTo(this,this); 
} 
// (protected) clamp off excess high words 
function bnpClamp() { 
var c = this.s&this.DM; 
while(this.t > 0 && this[this.t-1] == c) --this.t; 
} 
// (public) return string representation in given radix 
function bnToString(b) { 
if(this.s < 0) return "-"+this.negate().toString(b); 
var k; 
if(b == 16) k = 4; 
else if(b == 8) k = 3; 
else if(b == 2) k = 1; 
else if(b == 32) k = 5; 
else if(b == 4) k = 2; 
else return this.toRadix(b); 
var km = (1<<k)-1, d, m = false, r = "", i = this.t; 
var p = this.DB-(i*this.DB)%k; 
if(i-- > 0) { 
if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } 
while(i >= 0) { 
if(p < k) { 
d = (this[i]&((1<<p)-1))<<(k-p); 
d |= this[--i]>>(p+=this.DB-k); 
} 
else { 
d = (this[i]>>(p-=k))&km; 
if(p <= 0) { p += this.DB; --i; } 
} 
if(d > 0) m = true; 
if(m) r += int2char(d); 
} 
} 
return m?r:"0"; 
} 
// (public) -this 
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } 
// (public) |this| 
function bnAbs() { return (this.s<0)?this.negate():this; } 
// (public) return + if this > a, - if this < a, 0 if equal 
function bnCompareTo(a) { 
var r = this.s-a.s; 
if(r != 0) return r; 
var i = this.t; 
r = i-a.t; 
if(r != 0) return r; 
while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; 
return 0; 
} 
// returns bit length of the integer x 
function nbits(x) { 
var r = 1, t; 
if((t=x>>>16) != 0) { x = t; r += 16; } 
if((t=x>>8) != 0) { x = t; r += 8; } 
if((t=x>>4) != 0) { x = t; r += 4; } 
if((t=x>>2) != 0) { x = t; r += 2; } 
if((t=x>>1) != 0) { x = t; r += 1; } 
return r; 
} 
// (public) return the number of bits in "this" 
function bnBitLength() { 
if(this.t <= 0) return 0; 
return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); 
} 
// (protected) r = this << n*DB 
function bnpDLShiftTo(n,r) { 
var i; 
for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; 
for(i = n-1; i >= 0; --i) r[i] = 0; 
r.t = this.t+n; 
r.s = this.s; 
} 
// (protected) r = this >> n*DB 
function bnpDRShiftTo(n,r) { 
for(var i = n; i < this.t; ++i) r[i-n] = this[i]; 
r.t = Math.max(this.t-n,0); 
r.s = this.s; 
} 
// (protected) r = this << n 
function bnpLShiftTo(n,r) { 
var bs = n%this.DB; 
var cbs = this.DB-bs; 
var bm = (1<<cbs)-1; 
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; 
for(i = this.t-1; i >= 0; --i) { 
r[i+ds+1] = (this[i]>>cbs)|c; 
c = (this[i]&bm)<<bs; 
} 
for(i = ds-1; i >= 0; --i) r[i] = 0; 
r[ds] = c; 
r.t = this.t+ds+1; 
r.s = this.s; 
r.clamp(); 
} 
// (protected) r = this >> n 
function bnpRShiftTo(n,r) { 
r.s = this.s; 
var ds = Math.floor(n/this.DB); 
if(ds >= this.t) { r.t = 0; return; } 
var bs = n%this.DB; 
var cbs = this.DB-bs; 
var bm = (1<<bs)-1; 
r[0] = this[ds]>>bs; 
for(var i = ds+1; i < this.t; ++i) { 
r[i-ds-1] |= (this[i]&bm)<<cbs; 
r[i-ds] = this[i]>>bs; 
} 
if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; 
r.t = this.t-ds; 
r.clamp(); 
} 
// (protected) r = this - a 
function bnpSubTo(a,r) { 
var i = 0, c = 0, m = Math.min(a.t,this.t); 
while(i < m) { 
c += this[i]-a[i]; 
r[i++] = c&this.DM; 
c >>= this.DB; 
} 
if(a.t < this.t) { 
c -= a.s; 
while(i < this.t) { 
c += this[i]; 
r[i++] = c&this.DM; 
c >>= this.DB; 
} 
c += this.s; 
} 
else { 
c += this.s; 
while(i < a.t) { 
c -= a[i]; 
r[i++] = c&this.DM; 
c >>= this.DB; 
} 
c -= a.s; 
} 
r.s = (c<0)?-1:0; 
if(c < -1) r[i++] = this.DV+c; 
else if(c > 0) r[i++] = c; 
r.t = i; 
r.clamp(); 
} 
// (protected) r = this * a, r != this,a (HAC 14.12) 
// "this" should be the larger one if appropriate. 
function bnpMultiplyTo(a,r) { 
var x = this.abs(), y = a.abs(); 
var i = x.t; 
r.t = i+y.t; 
while(--i >= 0) r[i] = 0; 
for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); 
r.s = 0; 
r.clamp(); 
if(this.s != a.s) BigInteger.ZERO.subTo(r,r); 
} 
// (protected) r = this^2, r != this (HAC 14.16) 
function bnpSquareTo(r) { 
var x = this.abs(); 
var i = r.t = 2*x.t; 
while(--i >= 0) r[i] = 0; 
for(i = 0; i < x.t-1; ++i) { 
var c = x.am(i,x[i],r,2*i,0,1); 
if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { 
r[i+x.t] -= x.DV; 
r[i+x.t+1] = 1; 
} 
} 
if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); 
r.s = 0; 
r.clamp(); 
} 
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) 
// r != q, this != m. q or r may be null. 
function bnpDivRemTo(m,q,r) { 
var pm = m.abs(); 
if(pm.t <= 0) return; 
var pt = this.abs(); 
if(pt.t < pm.t) { 
if(q != null) q.fromInt(0); 
if(r != null) this.copyTo(r); 
return; 
} 
if(r == null) r = nbi(); 
var y = nbi(), ts = this.s, ms = m.s; 
var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus 
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } 
else { pm.copyTo(y); pt.copyTo(r); } 
var ys = y.t; 
var y0 = y[ys-1]; 
if(y0 == 0) return; 
var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); 
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; 
var i = r.t, j = i-ys, t = (q==null)?nbi():q; 
y.dlShiftTo(j,t); 
if(r.compareTo(t) >= 0) { 
r[r.t++] = 1; 
r.subTo(t,r); 
} 
BigInteger.ONE.dlShiftTo(ys,t); 
t.subTo(y,y); // "negative" y so we can replace sub with am later 
while(y.t < ys) y[y.t++] = 0; 
while(--j >= 0) { 
// Estimate quotient digit 
var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); 
if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out 
y.dlShiftTo(j,t); 
r.subTo(t,r); 
while(r[i] < --qd) r.subTo(t,r); 
} 
} 
if(q != null) { 
r.drShiftTo(ys,q); 
if(ts != ms) BigInteger.ZERO.subTo(q,q); 
} 
r.t = ys; 
r.clamp(); 
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder 
if(ts < 0) BigInteger.ZERO.subTo(r,r); 
} 
// (public) this mod a 
function bnMod(a) { 
var r = nbi(); 
this.abs().divRemTo(a,null,r); 
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); 
return r; 
} 
// Modular reduction using "classic" algorithm 
function Classic(m) { this.m = m; } 
function cConvert(x) { 
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); 
else return x; 
} 
function cRevert(x) { return x; } 
function cReduce(x) { x.divRemTo(this.m,null,x); } 
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } 
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } 
Classic.prototype.convert = cConvert; 
Classic.prototype.revert = cRevert; 
Classic.prototype.reduce = cReduce; 
Classic.prototype.mulTo = cMulTo; 
Classic.prototype.sqrTo = cSqrTo; 
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction 
// justification: 
// xy == 1 (mod m) 
// xy = 1+km 
// xy(2-xy) = (1+km)(1-km) 
// x[y(2-xy)] = 1-k^2m^2 
// x[y(2-xy)] == 1 (mod m^2) 
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. 
// JS multiply "overflows" differently from C/C++, so care is needed here. 
function bnpInvDigit() { 
if(this.t < 1) return 0; 
var x = this[0]; 
if((x&1) == 0) return 0; 
var y = x&3; // y == 1/x mod 2^2 
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 
// last step - calculate inverse mod DV directly; 
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints 
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits 
// we really want the negative inverse, and -DV < y < DV 
return (y>0)?this.DV-y:-y; 
} 
// Montgomery reduction 
function Montgomery(m) { 
this.m = m; 
this.mp = m.invDigit(); 
this.mpl = this.mp&0x7fff; 
this.mph = this.mp>>15; 
this.um = (1<<(m.DB-15))-1; 
this.mt2 = 2*m.t; 
} 
// xR mod m 
function montConvert(x) { 
var r = nbi(); 
x.abs().dlShiftTo(this.m.t,r); 
r.divRemTo(this.m,null,r); 
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); 
return r; 
} 
// x/R mod m 
function montRevert(x) { 
var r = nbi(); 
x.copyTo(r); 
this.reduce(r); 
return r; 
} 
// x = x/R mod m (HAC 14.32) 
function montReduce(x) { 
while(x.t <= this.mt2) // pad x so am has enough room later 
x[x.t++] = 0; 
for(var i = 0; i < this.m.t; ++i) { 
// faster way of calculating u0 = x[i]*mp mod DV 
var j = x[i]&0x7fff; 
var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; 
// use am to combine the multiply-shift-add into one call 
j = i+this.m.t; 
x[j] += this.m.am(0,u0,x,i,0,this.m.t); 
// propagate carry 
while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } 
} 
x.clamp(); 
x.drShiftTo(this.m.t,x); 
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); 
} 
// r = "x^2/R mod m"; x != r 
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } 
// r = "xy/R mod m"; x,y != r 
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } 
Montgomery.prototype.convert = montConvert; 
Montgomery.prototype.revert = montRevert; 
Montgomery.prototype.reduce = montReduce; 
Montgomery.prototype.mulTo = montMulTo; 
Montgomery.prototype.sqrTo = montSqrTo; 
// (protected) true iff this is even 
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } 
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) 
function bnpExp(e,z) { 
if(e > 0xffffffff || e < 1) return BigInteger.ONE; 
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; 
g.copyTo(r); 
while(--i >= 0) { 
z.sqrTo(r,r2); 
if((e&(1<<i)) > 0) z.mulTo(r2,g,r); 
else { var t = r; r = r2; r2 = t; } 
} 
return z.revert(r); 
} 
// (public) this^e % m, 0 <= e < 2^32 
function bnModPowInt(e,m) { 
var z; 
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); 
return this.exp(e,z); 
} 
// protected 
BigInteger.prototype.copyTo = bnpCopyTo; 
BigInteger.prototype.fromInt = bnpFromInt; 
BigInteger.prototype.fromString = bnpFromString; 
BigInteger.prototype.clamp = bnpClamp; 
BigInteger.prototype.dlShiftTo = bnpDLShiftTo; 
BigInteger.prototype.drShiftTo = bnpDRShiftTo; 
BigInteger.prototype.lShiftTo = bnpLShiftTo; 
BigInteger.prototype.rShiftTo = bnpRShiftTo; 
BigInteger.prototype.subTo = bnpSubTo; 
BigInteger.prototype.multiplyTo = bnpMultiplyTo; 
BigInteger.prototype.squareTo = bnpSquareTo; 
BigInteger.prototype.divRemTo = bnpDivRemTo; 
BigInteger.prototype.invDigit = bnpInvDigit; 
BigInteger.prototype.isEven = bnpIsEven; 
BigInteger.prototype.exp = bnpExp; 
// public 
BigInteger.prototype.toString = bnToString; 
BigInteger.prototype.negate = bnNegate; 
BigInteger.prototype.abs = bnAbs; 
BigInteger.prototype.compareTo = bnCompareTo; 
BigInteger.prototype.bitLength = bnBitLength; 
BigInteger.prototype.mod = bnMod; 
BigInteger.prototype.modPowInt = bnModPowInt; 
// "constants" 
BigInteger.ZERO = nbv(0); 
BigInteger.ONE = nbv(1); 
#文件prng4.js 
// prng4.js - uses Arcfour as a PRNG 
function Arcfour() { 
this.i = 0; 
this.j = 0; 
this.S = new Array(); 
} 
// Initialize arcfour context from key, an array of ints, each from [0..255] 
function ARC4init(key) { 
var i, j, t; 
for(i = 0; i < 256; ++i) 
this.S[i] = i; 
j = 0; 
for(i = 0; i < 256; ++i) { 
j = (j + this.S[i] + key[i % key.length]) & 255; 
t = this.S[i]; 
this.S[i] = this.S[j]; 
this.S[j] = t; 
} 
this.i = 0; 
this.j = 0; 
} 
function ARC4next() { 
var t; 
this.i = (this.i + 1) & 255; 
this.j = (this.j + this.S[this.i]) & 255; 
t = this.S[this.i]; 
this.S[this.i] = this.S[this.j]; 
this.S[this.j] = t; 
return this.S[(t + this.S[this.i]) & 255]; 
} 
Arcfour.prototype.init = ARC4init; 
Arcfour.prototype.next = ARC4next; 
// Plug in your RNG constructor here 
function prng_newstate() { 
return new Arcfour(); 
} 
// Pool size must be a multiple of 4 and greater than 32. 
// An array of bytes the size of the pool will be passed to init() 
var rng_psize = 256; 
文件:rng.js 
// Random number generator - requires a PRNG backend, e.g. prng4.js 
// For best results, put code like 
// <body onClick=&#39;rng_seed_time();&#39; onKeyPress=&#39;rng_seed_time();&#39;> 
// in your main HTML document. 
var rng_state; 
var rng_pool; 
var rng_pptr; 
// Mix in a 32-bit integer into the pool 
function rng_seed_int(x) { 
rng_pool[rng_pptr++] ^= x & 255; 
rng_pool[rng_pptr++] ^= (x >> 8) & 255; 
rng_pool[rng_pptr++] ^= (x >> 16) & 255; 
rng_pool[rng_pptr++] ^= (x >> 24) & 255; 
if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; 
} 
// Mix in the current time (w/milliseconds) into the pool 
function rng_seed_time() { 
rng_seed_int(new Date().getTime()); 
} 
// Initialize the pool with junk if needed. 
if(rng_pool == null) { 
rng_pool = new Array(); 
rng_pptr = 0; 
var t; 
if(navigator.appName == "Netscape" && navigator.appVersion < "5" && window.crypto) { 
// Extract entropy (256 bits) from NS4 RNG if available 
var z = window.crypto.random(32); 
for(t = 0; t < z.length; ++t) 
rng_pool[rng_pptr++] = z.charCodeAt(t) & 255; 
} 
while(rng_pptr < rng_psize) { // extract some randomness from Math.random() 
t = Math.floor(65536 * Math.random()); 
rng_pool[rng_pptr++] = t >>> 8; 
rng_pool[rng_pptr++] = t & 255; 
} 
rng_pptr = 0; 
rng_seed_time(); 
//rng_seed_int(window.screenX); 
//rng_seed_int(window.screenY); 
} 
function rng_get_byte() { 
if(rng_state == null) { 
rng_seed_time(); 
rng_state = prng_newstate(); 
rng_state.init(rng_pool); 
for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) 
rng_pool[rng_pptr] = 0; 
rng_pptr = 0; 
//rng_pool = null; 
} 
// TODO: allow reseeding after first request 
return rng_state.next(); 
} 
function rng_get_bytes(ba) { 
var i; 
for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); 
} 
function SecureRandom() {} 
SecureRandom.prototype.nextBytes = rng_get_bytes; 
#文件:rsa.js 
// Depends on jsbn.js and rng.js 
// Version 1.1: support utf-8 encoding in pkcs1pad2 
// convert a (hex) string to a bignum object 
function parseBigInt(str,r) { 
return new BigInteger(str,r); 
} 
function linebrk(s,n) { 
var ret = ""; 
var i = 0; 
while(i + n < s.length) { 
ret += s.substring(i,i+n) + "\n"; 
i += n; 
} 
return ret + s.substring(i,s.length); 
} 
function byte2Hex(b) { 
if(b < 0x10) 
return "0" + b.toString(16); 
else 
return b.toString(16); 
} 
// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint 
function pkcs1pad2(s,n) { 
if(n < s.length + 11) { // TODO: fix for utf-8 
alert("Message too long for RSA"); 
return null; 
} 
var ba = new Array(); 
var i = s.length - 1; 
while(i >= 0 && n > 0) { 
var c = s.charCodeAt(i--); 
if(c < 128) { // encode using utf-8 
ba[--n] = c; 
} 
else if((c > 127) && (c < 2048)) { 
ba[--n] = (c & 63) | 128; 
ba[--n] = (c >> 6) | 192; 
} 
else { 
ba[--n] = (c & 63) | 128; 
ba[--n] = ((c >> 6) & 63) | 128; 
ba[--n] = (c >> 12) | 224; 
} 
} 
ba[--n] = 0; 
var rng = new SecureRandom(); 
var x = new Array(); 
while(n > 2) { // random non-zero pad 
x[0] = 0; 
while(x[0] == 0) rng.nextBytes(x); 
ba[--n] = x[0]; 
} 
ba[--n] = 2; 
ba[--n] = 0; 
return new BigInteger(ba); 
} 
// "empty" RSA key constructor 
function RSAKey() { 
this.n = null; 
this.e = 0; 
this.d = null; 
this.p = null; 
this.q = null; 
this.dmp1 = null; 
this.dmq1 = null; 
this.coeff = null; 
} 
// Set the public key fields N and e from hex strings 
function RSASetPublic(N,E) { 
if(N != null && E != null && N.length > 0 && E.length > 0) { 
this.n = parseBigInt(N,16); 
this.e = parseInt(E,16); 
} 
else 
alert("Invalid RSA public key"); 
} 
// Perform raw public operation on "x": return x^e (mod n) 
function RSADoPublic(x) { 
return x.modPowInt(this.e, this.n); 
} 
// Return the PKCS#1 RSA encryption of "text" as an even-length hex string 
function RSAEncrypt(text) { 
var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); 
if(m == null) return null; 
var c = this.doPublic(m); 
if(c == null) return null; 
var h = c.toString(16); 
if((h.length & 1) == 0) return h; else return "0" + h; 
} 
// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string 
//function RSAEncryptB64(text) { 
// var h = this.encrypt(text); 
// if(h) return hex2b64(h); else return null; 
//} 
// protected 
RSAKey.prototype.doPublic = RSADoPublic; 
// public 
RSAKey.prototype.setPublic = RSASetPublic; 
RSAKey.prototype.encrypt = RSAEncrypt; 
//RSAKey.prototype.encrypt_b64 = RSAEncryptB64; 

HTML代码部分: 
复制代码代码如下:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 
<html> 
<head> 
<title>JavaScript RSA Encryption Demo</title> 
</head> 
<script language="JavaScript" type="text/javascript" src="./js/jsbn.js"></script> 
<script language="JavaScript" type="text/javascript" src="./js/prng4.js"></script> 
<script language="JavaScript" type="text/javascript" src="./js/rng.js"></script> 
<script language="JavaScript" type="text/javascript" src="./js/rsa.js"></script> 
<script language="JavaScript" type="text/javascript" src="./js/base64.js"></script> 
<script language="JavaScript"> 
//publc key and public length 16 binary data 
var public_key="00b0c2732193eebde5b2e278736a22977a5ee1bb99bea18c0681ad97484b4c7f681e963348eb80667b954534293b0a6cbe2f9651fc98c9ee833f343e719c97c670ead8bec704282f94d9873e083cfd41554f356f00aea38d2b07551733541b64790c2c8f400486fd662a3e95fd5edd2acf4d59ca97fad65cc59b8d10cbc5430c53"; 
var public_length="10001"; 
function do_encrypt() { 
var before = new Date(); 
var rsa = new RSAKey(); 
rsa.setPublic(public_key, public_length); 
var res = rsa.encrypt(document.rsatest.plaintext.value); 
var after = new Date(); 
if(res) { 
document.rsatest.ciphertext.value =res; 
document.rsatest.cipherb64.value = hex2b64(res); 
document.rsatest.status.value = "Time: " + (after - before) + "ms"; 
} 
} 
//--> 
</script> 
<form name="rsatest" action="rsa-example.php" method="post"> 
Plaintext (string):<br> 
<input name="plaintext" type="text" value="test" size=40> 
<input type="button" value="encrypt" onClick="do_encrypt();"><p> 
Ciphertext (hex):<br> 
<textarea name="ciphertext" rows=4 cols=70></textarea><p> 
Ciphertext (base64):(Not used)<br> 
<textarea name="cipherb64" rows=3 cols=70></textarea><p> 
Status:<br> 
<input name="status" type="text" size=40><p> 
<input type="submit" value="go php" /> 
</form> 
</body> 
</html> 

后端PHP部分: 
RSA库: 
复制代码代码如下:

<?php 
/* 
* PHP implementation of the RSA algorithm 
* (C) Copyright 2004 Edsko de Vries, Ireland 
* 
* Licensed under the GNU Public License (GPL) 
* 
* This implementation has been verified against [3] 
* (tested Java/PHP interoperability). 
* 
* References: 
* [1] "Applied Cryptography", Bruce Schneier, John Wiley & Sons, 1996 
* [2] "Prime Number Hide-and-Seek", Brian Raiter, Muppetlabs (online) 
* [3] "The Bouncy Castle Crypto Package", Legion of the Bouncy Castle, 
* (open source cryptography library for Java, online) 
* [4] "PKCS #1: RSA Encryption Standard", RSA Laboratories Technical Note, 
* version 1.5, revised November 1, 1993 
*/ 
/* 
* Functions that are meant to be used by the user of this PHP module. 
* 
* Notes: 
* - $key and $modulus should be numbers in (decimal) string format 
* - $message is expected to be binary data 
* - $keylength should be a multiple of 8, and should be in bits 
* - For rsa_encrypt/rsa_sign, the length of $message should not exceed 
* ($keylength / 8) - 11 (as mandated by [4]). 
* - rsa_encrypt and rsa_sign will automatically add padding to the message. 
* For rsa_encrypt, this padding will consist of random values; for rsa_sign, 
* padding will consist of the appropriate number of 0xFF values (see [4]) 
* - rsa_decrypt and rsa_verify will automatically remove message padding. 
* - Blocks for decoding (rsa_decrypt, rsa_verify) should be exactly 
* ($keylength / 8) bytes long. 
* - rsa_encrypt and rsa_verify expect a public key; rsa_decrypt and rsa_sign 
* expect a private key. 
*/ 
/** 
* 于2010-11-12 1:06分于LONELY修改 
*/ 
function rsa_encrypt($message, $public_key, $modulus, $keylength) 
{ 
$padded = add_PKCS1_padding($message, true, $keylength / 8); 
$number = binary_to_number($padded); 
$encrypted = pow_mod($number, $public_key, $modulus); 
$result = number_to_binary($encrypted, $keylength / 8); 
return $result; 
} 
function rsa_decrypt($message, $private_key, $modulus, $keylength) 
{ 
$number = binary_to_number($message); 
$decrypted = pow_mod($number, $private_key, $modulus); 
$result = number_to_binary($decrypted, $keylength / 8); 
return remove_PKCS1_padding($result, $keylength / 8); 
} 
function rsa_sign($message, $private_key, $modulus, $keylength) 
{ 
$padded = add_PKCS1_padding($message, false, $keylength / 8); 
$number = binary_to_number($padded); 
$signed = pow_mod($number, $private_key, $modulus); 
$result = number_to_binary($signed, $keylength / 8); 
return $result; 
} 
function rsa_verify($message, $public_key, $modulus, $keylength) 
{ 
return rsa_decrypt($message, $public_key, $modulus, $keylength); 
} 
function rsa_kyp_verify($message, $public_key, $modulus, $keylength) 
{ 
$number = binary_to_number($message); 
$decrypted = pow_mod($number, $public_key, $modulus); 
$result = number_to_binary($decrypted, $keylength / 8); 
return remove_KYP_padding($result, $keylength / 8); 
} 
/* 
* Some constants 
*/ 
define("BCCOMP_LARGER", 1); 
/* 
* The actual implementation. 
* Requires BCMath support in PHP (compile with --enable-bcmath) 
*/ 
//-- 
// Calculate (p ^ q) mod r 
// 
// We need some trickery to [2]: 
// (a) Avoid calculating (p ^ q) before (p ^ q) mod r, because for typical RSA 
// applications, (p ^ q) is going to be _WAY_ too large. 
// (I mean, __WAY__ too large - won&#39;t fit in your computer&#39;s memory.) 
// (b) Still be reasonably efficient. 
// 
// We assume p, q and r are all positive, and that r is non-zero. 
// 
// Note that the more simple algorithm of multiplying $p by itself $q times, and 
// applying "mod $r" at every step is also valid, but is O($q), whereas this 
// algorithm is O(log $q). Big difference. 
// 
// As far as I can see, the algorithm I use is optimal; there is no redundancy 
// in the calculation of the partial results. 
//-- 
function pow_mod($p, $q, $r) 
{ 
// Extract powers of 2 from $q 
$factors = array(); 
$div = $q; 
$power_of_two = 0; 
while(bccomp($div, "0") == BCCOMP_LARGER) 
{ 
$rem = bcmod($div, 2); 
$div = bcdiv($div, 2); 
if($rem) array_push($factors, $power_of_two); 
$power_of_two++; 
} 
// Calculate partial results for each factor, using each partial result as a 
// starting point for the next. This depends of the factors of two being 
// generated in increasing order. 
$partial_results = array(); 
$part_res = $p; 
$idx = 0; 
foreach($factors as $factor) 
{ 
while($idx < $factor) 
{ 
$part_res = bcpow($part_res, "2"); 
$part_res = bcmod($part_res, $r); 
$idx++; 
} 
array_push($partial_results, $part_res); 
} 
// Calculate final result 
$result = "1"; 
foreach($partial_results as $part_res) 
{ 
$result = bcmul($result, $part_res); 
$result = bcmod($result, $r); 
} 
return $result; 
} 
//-- 
// Function to add padding to a decrypted string 
// We need to know if this is a private or a public key operation [4] 
//-- 
function add_PKCS1_padding($data, $isPublicKey, $blocksize) 
{ 
$pad_length = $blocksize - 3 - strlen($data); 
if($isPublicKey) 
{ 
$block_type = "\x02"; 
$padding = ""; 
for($i = 0; $i < $pad_length; $i++) 
{ 
$rnd = mt_rand(1, 255); 
$padding .= chr($rnd); 
} 
} 
else 
{ 
$block_type = "\x01"; 
$padding = str_repeat("\xFF", $pad_length); 
} 
return "\x00" . $block_type . $padding . "\x00" . $data; 
} 
//-- 
// Remove padding from a decrypted string 
// See [4] for more details. 
//-- 
function remove_PKCS1_padding($data, $blocksize) 
{ 
//以下部分于原版的RSA有所不同,修复了原版的一个BUG 
//assert(strlen($data) == $blocksize); 
$data = substr($data, 1); 
// We cannot deal with block type 0 
if($data{0} == &#39;\0&#39;) 
die("Block type 0 not implemented."); 
// Then the block type must be 1 or 2 
//assert(($data{0} == "\x01") || ($data{0} == "\x02")); 
// echo $data; 
// Remove the padding 
$i=1; 
while (1){ 
$offset = strpos($data, "\0", $i); 
if(!$offset){ 
$offset=$i; 
break; 
} 
$i=$offset+1; 
} 
//$offset = strpos($data, "\0", 100); 
return substr($data, $offset); 
} 
//-- 
// Remove "kyp" padding 
// (Non standard) 
//-- 
function remove_KYP_padding($data, $blocksize) 
{ 
assert(strlen($data) == $blocksize); 
$offset = strpos($data, "\0"); 
return substr($data, 0, $offset); 
} 
//-- 
// Convert binary data to a decimal number 
//-- 
function binary_to_number($data) 
{ 
$base = "256"; 
$radix = "1"; 
$result = "0"; 
for($i = strlen($data) - 1; $i >= 0; $i--) 
{ 
$digit = ord($data{$i}); 
$part_res = bcmul($digit, $radix); 
$result = bcadd($result, $part_res); 
$radix = bcmul($radix, $base); 
} 
return $result; 
} 
//-- 
// Convert a number back into binary form 
//-- 
function number_to_binary($number, $blocksize) 
{ 
$base = "256"; 
$result = ""; 
$div = $number; 
while($div > 0) 
{ 
$mod = bcmod($div, $base); 
$div = bcdiv($div, $base); 
$result = chr($mod) . $result; 
} 
return str_pad($result, $blocksize, "\x00", STR_PAD_LEFT); 
} 
?>

处理的PHP代码: 

<?php 
//Decimal Data 
include "rsa.php"; 
$modulus=&#39;124124790696783899579957666732205416556275207289308772677367395397704314099727565633927507139389670490184904760526156031441045563225987129220634807383637837918320623518532877734472159024203477820731033762885040862183213160281165618500092483026873487507336293388981515466164416989192069833140532570993394388051.0000000000&#39;; 
$private=&#39;59940207454900542501281722336097731406274284149290386158861762508911700758780200454438527029729836453810395133453343700246367853044479311924174899432036400630350527132581124575735909908195078492323048176864577497230467497768502277772070557874686662727818507841304646138785432507752788647631021854537869399041.0000000000&#39;; 
$public="65537"; 
$keylength="1024"; 
//php encrypt create 
//$encrypted = rsa_encrypt("vzxcvz bdxf", $public, $modulus, $keylength); 
//$str= bin2hex($encrypted);//bin data to hex data 
$str=$_POST[&#39;ciphertext&#39;]; 
//echo $str."<br>"; 
$encrypted=convert($str); //hex data to bin data 
$decrypted = rsa_decrypt($encrypted, $private, $modulus, $keylength); 
echo $decrypted."<br>"; 
/** 
* 16 to 2 
* @param unknown_type $hexString 
* @return string|unknown 
*/ 
function convert($hexString) 
{ 
$hexLenght = strlen($hexString); 
// only hex numbers is allowed 
if ($hexLenght % 2 != 0 || preg_match("/[^\da-fA-F]/",$hexString)) return FALSE; 
unset($binString); 
for ($x = 1; $x <= $hexLenght/2; $x++) 
{ 
$binString .= chr(hexdec(substr($hexString,2 * $x - 2,2))); 
} 
return $binString; 
} 
?>

生成PRM文件及生产需要的密钥及公钥的PHP文件: 

<?php 
//create pem file 
//run openssl genrsa -out key.pem 1024 
//This file is generated variables needed for the operation 
list($keylength, $modulus, $public, $private,$modulus_js,$private_js) = read_ssl_key("key.pem"); 
echo "keylength:(php and js)(private length)<br>"; 
echo $keylength; 
echo "<br>"; 
echo "modulus:(php)(10)(pubic key)<br>"; 
echo $modulus; 
echo "<br>"; 
echo "modulus:(js)(16)(pubic key)<br>"; 
echo $modulus_js; 
echo "<br>"; 
echo "public:(php)(10)(public exponent)<br>"; 
echo $public; 
echo "<br>"; 
echo "public:(js)(16)(public exponent)<br>"; 
echo "10001"; 
echo "<br>"; 
echo "private:(php)(10)(private key)<br>"; 
echo $private; 
echo "<br>"; 
echo "private:(js)(16)(private key)<br>"; 
echo $private_js; 
//function 
function read_ssl_key($filename) 
{ 
exec("openssl rsa -in $filename -text -noout", $raw); 
// read the key length 
$keylength = (int) expect($raw[0], "Private-Key: ("); 
// read the modulus 
expect($raw[1], "modulus:"); 
for($i = 2; $raw[$i][0] == &#39; &#39;; $i++) $modulusRaw .= trim($raw[$i]); 
// read the public exponent 
$public = (int) expect($raw[$i], "publicExponent: "); 
// read the private exponent 
expect($raw[$i + 1], "privateExponent:"); 
for($i += 2; $raw[$i][0] == &#39; &#39;; $i++) $privateRaw .= trim($raw[$i]); 
// Just to make sure 
expect($raw[$i], "prime1:"); 
// Conversion to decimal format for bcmath 
$modulus = bc_hexdec($modulusRaw); 
$private = bc_hexdec($privateRaw); 
return array($keylength, $modulus[&#39;php&#39;], $public, $private[&#39;php&#39;],$modulus[&#39;js&#39;], $private[&#39;js&#39;]); 
} 
/* 
* Convert a hexadecimal number of the form "XX:YY:ZZ:..." to decimal 
* Uses BCmath, but the standard normal hexdec function for the components 
*/ 
function bc_hexdec($hex) 
{ 
$coefficients = explode(":", $hex); 
$result_js= implode("",$coefficients); 
$i = 0; 
$result = 0; 
foreach(array_reverse($coefficients) as $coefficient) 
{ 
$mult = bcpow(256, $i++); 
$result = bcadd($result, bcmul(hexdec($coefficient), $mult)); 
} 
return array(&#39;php&#39;=>$result,&#39;js&#39;=>$result_js); 
} 
/* 
* If the string has the given prefix, return the remainder. 
* If not, die with an error 
*/ 
function expect($str, $prefix) 
{ 
if(substr($str, 0, strlen($prefix)) == $prefix) 
return substr($str, strlen($prefix)); 
else 
die("Error: expected $prefix"); 
}

整套加密及解密的方法都在上面了,本人的测试环境为php5.3+WIN7 

更多PHP+JS+rsa数据加密传输实现代码相关文章请关注PHP中文网!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn