搜尋
首頁科技週邊人工智慧用假嵌入增強破布系統

>多模式檢索儀(RAG)系統正在通過整合多種數據類型(TEXT,圖像,音頻和視頻)來徹底改變AI,從而獲得更多細微差別和上下文感知的響應。 這超過了傳統的抹布,這僅關注文本。 一個關鍵的進步是通訊嵌入,為視覺和文本數據創建了一個統一的空間,從而實現了無縫的跨模式交互。 高級模型會生成高質量的嵌入,改善信息檢索並彌合不同內容形式之間的差距,最終豐富用戶體驗。

學習目標

  • 掌握了多模式抹布的基本原理及其優勢比傳統抹布。
  • 了解嵌入統一文本和圖像嵌入空間中的作用。
  • 比較剪輯模型的somic視覺嵌入,分析性能基準。
  • >使用somic Vision和Text Embeddings在Python中實現多模式的RAG系統。
  • 學習從PDF中提取和處理多模式檢索的文本和視覺數據。

*本文是*** 數據科學blogathon的一部分。

目錄的

>

    什麼是多模式的抹布?
  • nive vision嵌入
  • >雜誌嵌入的性能基準
  • python實施多模式抹布,帶有通知嵌入
    • >步驟1:安裝必要的庫
    • >步驟2:設置OpenAI API鍵並導入庫
    • >
    • 步驟3:從PDF
    • 中提取圖像
    • 步驟4:從PDF
    • 提取文本
    • 步驟5:保存提取的文本和圖像
    • 步驟6:塊文本數據
    • >步驟7:加載名詞嵌入模型
    • 步驟8:生成嵌入
    • >步驟9:將文本嵌入在qdrant
    • 中存儲
    • >步驟10:將圖像嵌入在qdrant
    • >步驟11:創建一個多模式獵犬
    • 步驟12:用蘭鏈構建多模式抹布
  • 查詢模型
  • 結論
  • 常見問題
什麼是多模式的抹布?

>多模式抹布代表了一個顯著的AI進步,這是通過合併多種數據類型來基於傳統抹布的。與主要處理文本的傳統系統不同,多模式抹布處理並同時集成了多個數據表格。這導致了更全面的理解和背景感知的反應。

鍵多模式抹布組件:

  • >數據攝入:來自各種來源的數據是使用專用處理器攝入的,確保驗證,清潔和歸一化。
  • >
  • >向量表示:>使用神經網絡(例如,圖像的剪輯,文本的剪輯,bert for Text)來處理統一的矢量嵌入,保留語義關係。
  • > 使用索引技術(HNSW,FAISS),將> >向量數據庫存儲:
  • 嵌入嵌入在優化的矢量數據庫(例如qdrant)中,以有效檢索。 查詢處理:
  • >傳入查詢被分析,轉換為與存儲數據相同的向量空間,並用於識別相關模態並生成用於搜索的嵌入。
  • nive vision嵌入

解決剪貼模型限制:

>

>剪輯以零拍功能出色時,其文本編碼在圖像檢索之外的任務中表現不佳(如MTEB基準測試所示)。 Nimic Embed Vision通過將其視覺編碼器與嵌入式文本潛在空間保持一致來解決這一點。

媒體嵌入視覺與提名嵌入文本一起訓練,凍結文本編碼器並在圖像文本對上訓練視覺編碼器。這樣可以確保最佳的結果和與名詞嵌入文本嵌入的向後兼容性。

>

>雜誌嵌入的性能基準Enhancing RAG Systems with Nomic Embeddings

剪輯模型雖然在零拍功能方面令人印象深刻,但在語義相似性(MTEB基準)等單峰任務中顯示出弱點。通用嵌入視覺通過將其視覺編碼器與名詞嵌入文本潛在空間保持一致,從而克服了這一點,從而在圖像,文本和多模式任務(Imagenet Zero-Shot,MTEB,MTEB,DataComp Benchmarks)中產生了強大的性能。

python實施多模式抹布,帶有通知嵌入

本教程構建了一個多模式抹布系統,從包含文本和圖像的PDF檢索信息(使用帶有T4 GPU的Google Colab)。

>步驟1:安裝庫Enhancing RAG Systems with Nomic Embeddings

安裝必要的Python庫:OpenAI,QDRANT,Transformers,Torch,Pymupdf等

>步驟2:設置OpenAI API鍵並導入庫

>

>設置OpenAI API密鑰並導入所需的庫(Pymupdf,PIL,Langchain,OpenAI等)。 (為簡短而省略了代碼。)

步驟3:從PDF

中提取圖像

>使用pymupdf從PDF提取圖像,然後將其保存到目錄中。 (為簡短而省略了代碼。)

步驟4:從PDF

提取文本

>使用pymupdf從每個PDF頁面中提取文本。 (為簡短而省略了代碼。)

步驟5:保存提取的數據

>保存提取的圖像和文本。 (為簡短而省略了代碼。)

步驟6:塊文本數據

>使用Langchain'sRecursiveCharacterTextSplitter將提取的文本分為較小的塊。 (為簡短而省略了代碼。)

>步驟7:加載名詞嵌入模型

>使用擁抱面孔的變形金剛加載Nomic的文本和視覺嵌入模型。 (為簡短而省略了代碼。)

步驟8:生成嵌入

生成文本和圖像嵌入。 (為簡短而省略了代碼。)

>步驟9:將文本嵌入在qdrant

中存儲

>將文本嵌入在QDrant集合中。 (為簡短而省略了代碼。)

>步驟10:將圖像嵌入在qdrant

>將圖像嵌入在單獨的QDrant集合中。 (為簡短而省略了代碼。)

>步驟11:創建一個多模式獵犬

>創建一個函數,以根據查詢檢索相關的文本和圖像嵌入。 (為簡短而省略了代碼。)

步驟12:用蘭鏈構建多模式抹布

>使用Langchain處理被檢索的數據並使用語言模型(例如GPT-4)生成響應。 (為簡短而省略了代碼。)

查詢模型

>示例查詢演示了系統從PDF中從文本和圖像中檢索信息的能力。 (示例查詢和輸出省略了,但在原始中存在。

結論

鑰匙要點

多模式抹布整合了多種數據類型,以更全面地理解。 nive vision嵌入統一視覺和文本數據以改進信息檢索。

該系統使用專門的處理,向量表示和存儲以進行有效檢索。
    nimic嵌入視力克服了剪輯在單峰任務中的局限性。
  • 常見問題
  • (為簡潔而省略了常見問題,但以原始形式存在。)
  • >

    注意:為簡短而省略了代碼片段,但核心功能和步驟仍然準確地描述了。 原始輸入包含廣泛的代碼;包括所有這些都會使這一響應過長。 請參閱原始輸入以進行完整的代碼實現。

    >

以上是用假嵌入增強破布系統的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
在LLMS中調用工具在LLMS中調用工具Apr 14, 2025 am 11:28 AM

大型語言模型(LLMS)的流行激增,工具稱呼功能極大地擴展了其功能,而不是簡單的文本生成。 現在,LLM可以處理複雜的自動化任務,例如Dynamic UI創建和自主a

多動症遊戲,健康工具和AI聊天機器人如何改變全球健康多動症遊戲,健康工具和AI聊天機器人如何改變全球健康Apr 14, 2025 am 11:27 AM

視頻遊戲可以緩解焦慮,建立焦點或支持多動症的孩子嗎? 隨著醫療保健在全球範圍內挑戰,尤其是在青年中的挑戰,創新者正在轉向一種不太可能的工具:視頻遊戲。現在是世界上最大的娛樂印度河之一

沒有關於AI的投入:獲勝者,失敗者和機遇沒有關於AI的投入:獲勝者,失敗者和機遇Apr 14, 2025 am 11:25 AM

“歷史表明,儘管技術進步推動了經濟增長,但它並不能自行確保公平的收入分配或促進包容性人類發展,”烏托德秘書長Rebeca Grynspan在序言中寫道。

通過生成AI學習談判技巧通過生成AI學習談判技巧Apr 14, 2025 am 11:23 AM

易於使用,使用生成的AI作為您的談判導師和陪練夥伴。 讓我們來談談。 對創新AI突破的這種分析是我正在進行的《福布斯》列的最新覆蓋範圍的一部分,包括識別和解釋

泰德(Ted)從Openai,Google,Meta透露出庭,與我自己自拍泰德(Ted)從Openai,Google,Meta透露出庭,與我自己自拍Apr 14, 2025 am 11:22 AM

在溫哥華舉行的TED2025會議昨天在4月11日舉行了第36版。它的特色是來自60多個國家 /地區的80個發言人,包括Sam Altman,Eric Sc​​hmidt和Palmer Luckey。泰德(Ted)的主題“人類重新構想”是量身定制的

約瑟夫·斯蒂格利茲(Joseph Stiglitz約瑟夫·斯蒂格利茲(Joseph StiglitzApr 14, 2025 am 11:21 AM

約瑟夫·斯蒂格利茨(Joseph Stiglitz)是2001年著名的經濟學家,是諾貝爾經濟獎的獲得者。斯蒂格利茨認為,AI可能會使現有的不平等和合併權力惡化,並在一些主導公司手中加劇,最終破壞了經濟上的經濟。

什麼是圖形數據庫?什麼是圖形數據庫?Apr 14, 2025 am 11:19 AM

圖數據庫:通過關係徹底改變數據管理 隨著數據的擴展及其特徵在各個字段中的發展,圖形數據庫正在作為管理互連數據的變革解決方案的出現。與傳統不同

LLM路由:策略,技術和Python實施LLM路由:策略,技術和Python實施Apr 14, 2025 am 11:14 AM

大型語言模型(LLM)路由:通過智​​能任務分配優化性能 LLM的快速發展的景觀呈現出各種各樣的模型,每個模型都具有獨特的優勢和劣勢。 有些在創意內容gen上表現出色

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
4 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
1 個月前By尊渡假赌尊渡假赌尊渡假赌

熱工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境