請我喝杯咖啡☕
ColorJitter() 可以改變零個或多個影像的亮度、對比、飽和度和色調,如下所示:
*備忘錄:
- 初始化的第一個參數是亮度(可選-預設:0-類型:float 或 tuple/list(float)):
*備註:
- 亮度範圍[min, max]。
- 必須是 0
- 單一值轉換為[max(0, 1-亮度), 1 亮度]。
- 元組或列表必須是具有 2 個元素的一維。 *第一個元素必須小於或等於第二個元素。
- 初始化的第二個參數是對比(可選-預設:0-類型:float 或 tuple/list(float)):
*備註:
- 這是對比的範圍[min, max]。
- 必須是 0
- 單一值轉換為 [max(0, 1-對比), 1 對比]。
- 元組或列表必須是具有 2 個元素的一維。 *第一個元素必須小於或等於第二個元素。
- 初始化的第三個參數是飽和度(可選-預設:0-類型:float 或 tuple/list(float)):
*備註:
- 這是飽和度的範圍[min, max]。
- 必須是 0
- 單一值轉換為 [max(0, 1-飽和度), 1 飽和度]。
- 元組或列表必須是具有 2 個元素的一維。 *第一個元素必須小於或等於第二個元素。
- 初始化的第四個參數是hue(可選-預設:0-類型:float或tuple/list(float)):
*備註:
- 這是色調的範圍 [min, max]。
- 必須是 -0.5
- 單一值轉換為 [-hue, Hue]。
- 元組或列表必須是具有 2 個元素的一維。 *第一個元素必須小於或等於第二個元素。
- 第一個參數是img(必需類型:PIL映像或張量/元組/列表(int或float)):
*備註:
- 它必須是 2D 或 3D。對於 3D,最深的 D 必須有一個元素。
- 不要使用img=。
- v2建議依照V1還是V2使用?我應該使用哪一個?
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import ColorJitter colorjitter = ColorJitter() colorjitter = ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) colorjitter = ColorJitter(brightness=(1.0, 2.0), contrast=(1.0, 1.0), saturation=(1.0, 1.0), hue=(0.0, 0.0)) colorjitter # ColorJitter() print(colorjitter.brightness) # None print(colorjitter.contrast) # None print(colorjitter.saturation) # None print(colorjitter.hue) # None origin_data = OxfordIIITPet( root="data", transform=None # transform=ColorJitter() # colorjitter = ColorJitter(brightness=0, # contrast=0, # saturation=0, # hue=0) # transform=ColorJitter(brightness=(1.0, 1.0), # contrast=(1.0, 1.0), # saturation=(1.0, 1.0), # hue=(0.0, 0.0)) ) p2bright_data = OxfordIIITPet( # `p` is plus. root="data", transform=ColorJitter(brightness=2.0) # transform=ColorJitter(brightness=(0.0, 3.0)) ) p2p2bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(2.0, 2.0)) ) p05p05bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(0.5, 0.5)) ) p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=2.0) # transform=ColorJitter(contrast=(0.0, 3.0)) ) p2p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(2.0, 2.0)) ) p05p05contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(0.5, 0.5)) ) p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=2.0) # transform=ColorJitter(saturation=(0.0, 3.0)) ) p2p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(2.0, 2.0)) ) p05p05satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(0.5, 0.5)) ) p05hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=0.5) # transform=ColorJitter(hue=(-0.5, 0.5)) ) p025p025hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=(0.25, 0.25)) ) m025m025hue_data = OxfordIIITPet( # `m` is minus. root="data", transform=ColorJitter(hue=(-0.25, -0.25)) ) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images(data=origin_data, main_title="origin_data") show_images(data=p2bright_data, main_title="p2bright_data") show_images(data=p2p2bright_data, main_title="p2p2bright_data") show_images(data=p05p05bright_data, main_title="p05p05bright_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2contra_data, main_title="p2contra_data") show_images(data=p2p2contra_data, main_title="p2p2contra_data") show_images(data=p05p05contra_data, main_title="p05p05contra_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2satura_data, main_title="p2satura_data") show_images(data=p2p2satura_data, main_title="p2p2satura_data") show_images(data=p05p05satura_data, main_title="p05p05satura_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p05hue_data, main_title="p05hue_data") show_images(data=p025p025hue_data, main_title="p025p025hue_data") show_images(data=m025m025hue_data, main_title="m025m025hue_data")
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import ColorJitter colorjitter = ColorJitter() colorjitter = ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) colorjitter = ColorJitter(brightness=(1.0, 2.0), contrast=(1.0, 1.0), saturation=(1.0, 1.0), hue=(0.0, 0.0)) colorjitter # ColorJitter() print(colorjitter.brightness) # None print(colorjitter.contrast) # None print(colorjitter.saturation) # None print(colorjitter.hue) # None origin_data = OxfordIIITPet( root="data", transform=None # transform=ColorJitter() # colorjitter = ColorJitter(brightness=0, # contrast=0, # saturation=0, # hue=0) # transform=ColorJitter(brightness=(1.0, 1.0), # contrast=(1.0, 1.0), # saturation=(1.0, 1.0), # hue=(0.0, 0.0)) ) p2bright_data = OxfordIIITPet( # `p` is plus. root="data", transform=ColorJitter(brightness=2.0) # transform=ColorJitter(brightness=(0.0, 3.0)) ) p2p2bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(2.0, 2.0)) ) p05p05bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(0.5, 0.5)) ) p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=2.0) # transform=ColorJitter(contrast=(0.0, 3.0)) ) p2p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(2.0, 2.0)) ) p05p05contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(0.5, 0.5)) ) p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=2.0) # transform=ColorJitter(saturation=(0.0, 3.0)) ) p2p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(2.0, 2.0)) ) p05p05satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(0.5, 0.5)) ) p05hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=0.5) # transform=ColorJitter(hue=(-0.5, 0.5)) ) p025p025hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=(0.25, 0.25)) ) m025m025hue_data = OxfordIIITPet( # `m` is minus. root="data", transform=ColorJitter(hue=(-0.25, -0.25)) ) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images(data=origin_data, main_title="origin_data") show_images(data=p2bright_data, main_title="p2bright_data") show_images(data=p2p2bright_data, main_title="p2p2bright_data") show_images(data=p05p05bright_data, main_title="p05p05bright_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2contra_data, main_title="p2contra_data") show_images(data=p2p2contra_data, main_title="p2p2contra_data") show_images(data=p05p05contra_data, main_title="p05p05contra_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2satura_data, main_title="p2satura_data") show_images(data=p2p2satura_data, main_title="p2p2satura_data") show_images(data=p05p05satura_data, main_title="p05p05satura_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p05hue_data, main_title="p05hue_data") show_images(data=p025p025hue_data, main_title="p025p025hue_data") show_images(data=m025m025hue_data, main_title="m025m025hue_data")
以上是PyTorch 中的 ColorJitter的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

文章討論了虛擬環境在Python中的作用,重點是管理項目依賴性並避免衝突。它詳細介紹了他們在改善項目管理和減少依賴問題方面的創建,激活和利益。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

WebStorm Mac版
好用的JavaScript開發工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。