何時使用和避免 Python 3.5 的 Asyncio 等待功能
Python 3.5 引入了await 關鍵字以方便使用 asyncio 進行非同步程式設計。然而,並不總是清楚應該等待哪些操作來最大化效率。
確定非同步候選者
經驗法則是等待任何執行 I/ 的函數O 操作,如存取網路或讀取檔案。這些操作可能會長時間阻塞同步程式碼。透過等待它們,asyncio 可以同時執行其他操作。
非同步程式碼的優點
如下面的程式碼片段所示,非同步程式碼可以顯著加快涉及以下操作的操作:多個 I/O呼叫:
# Synchronous way: download(url1) # takes 5 sec. download(url2) # takes 5 sec. # Total time: 10 sec. # Asynchronous way: await asyncio.gather( async_download(url1), # takes 5 sec. async_download(url2) # takes 5 sec. ) # Total time: only 5 sec. (+ little overhead for using asyncio)
具有混合非同步/同步程式碼的函數
非同步函數可以呼叫非同步和同步函數。但是,等待不執行 I/O 操作的同步程式碼沒有任何優勢。這可能會帶來不必要的開銷:
async def extract_links(url): # async_download() was created async to get benefit of I/O html = await async_download(url) # parse() doesn't work with I/O, there's no sense to make it async links = parse(html) return links
避免長時間運行的同步操作
避免非同步內長時間運行的同步操作(> 50 ms)至關重要函數,因為它們可以凍結所有其他非同步任務。要有效率地處理這些任務:
- 使用多重處理: 在單獨的進程中執行長時間運行的操作並等待結果:
executor = ProcessPoolExecutor(2) async def extract_links(url): data = await download(url) links = parse(data) # Now your main process can handle another async functions while separate process running links_found = await loop.run_in_executor(executor, search_in_very_big_file, links)
- 使用ThreadPoolExecutor: 對於I/O密集型同步任務,例如對 Web 伺服器的請求:
executor = ThreadPoolExecutor(2) async def download(url): response = await loop.run_in_executor(executor, requests.get, url) return response.text
以上是什麼時候應該使用 Python 3.5 的 asyncio 的 `await` 功能,什麼時候應該避免使用它?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

在使用Python的pandas庫時,如何在兩個結構不同的DataFrame之間進行整列複製是一個常見的問題。假設我們有兩個Dat...

文章討論了虛擬環境在Python中的作用,重點是管理項目依賴性並避免衝突。它詳細介紹了他們在改善項目管理和減少依賴問題方面的創建,激活和利益。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),