將 XML 文件轉換為 Pandas DataFrames
處理 XML 資料時,通常需要處理和分析其中的資訊。 Pandas 為此提供了一個方便的工具,可讓您將 XML 轉換為結構化 DataFrame。
讓我們考慮一個像給定的 XML 結構:
<author type="XXX" language="EN" gender="xx" feature="xx" web="foobar.com"> <documents count="N"> <document key="e95a9a6c790ecb95e46cf15bee517651">![CDATA[A large text with lots of strings and punctuations symbols [...] ]]></document> <!-- more documents --> </documents> </author>
目標是轉換此 XML到一個包含鍵、類型、語言、功能、網路和資料列的 DataFrame 中。
使用 ElementTree 的高效方法
為了實現這一點,我們可以利用 Python 的 xml .etree.ElementTree,它提供了一種解析 XML 的有效方法。這是一種改進的方法:
import pandas as pd import xml.etree.ElementTree as ET xml_data = "file_path" etree = ET.parse(xml_data) #create an ElementTree object def iter_docs(author): author_attr = author.attrib for doc in author.iter('document'): doc_dict = author_attr.copy() doc_dict.update(doc.attrib) doc_dict['data'] = doc.text yield doc_dict doc_df = pd.DataFrame(list(iter_docs(etree.getroot())))
在這種方法中,我們使用 iter_docs 生成器函數來迭代作者和文件元素,提取相關屬性和資料。然後,我們從產生的字典清單中建立一個 DataFrame。
附加說明:
- 如果您的XML 中有多個author元素,您可以使用另一個生成器函數來循環它們並迭代每個文件中的文檔。
- 如果 XML 的根元素不是作者,請相應地調整 etree.getroot() 呼叫。
使用 ElementTree 的好處:
- 高效的解析和記憶體使用。
- 提供 XML 結構的分層表示,使其易於導航。
- 支援各種 XML 功能,例如命名空間和註解。
透過遵循這種方法,您可以使用 pandas DataFrames 高效地將複雜的 XML 資料轉換為表格格式,從而實現進一步的資料操作和分析。
以上是如何在 Python 中有效地將 XML 資料轉換為 Pandas DataFrame?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本教程演示如何使用Python處理Zipf定律這一統計概念,並展示Python在處理該定律時讀取和排序大型文本文件的效率。 您可能想知道Zipf分佈這個術語是什麼意思。要理解這個術語,我們首先需要定義Zipf定律。別擔心,我會盡量簡化說明。 Zipf定律 Zipf定律簡單來說就是:在一個大型自然語言語料庫中,最頻繁出現的詞的出現頻率大約是第二頻繁詞的兩倍,是第三頻繁詞的三倍,是第四頻繁詞的四倍,以此類推。 讓我們來看一個例子。如果您查看美國英語的Brown語料庫,您會注意到最頻繁出現的詞是“th

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

處理嘈雜的圖像是一個常見的問題,尤其是手機或低分辨率攝像頭照片。 本教程使用OpenCV探索Python中的圖像過濾技術來解決此問題。 圖像過濾:功能強大的工具圖像過濾器

PDF 文件因其跨平台兼容性而廣受歡迎,內容和佈局在不同操作系統、閱讀設備和軟件上保持一致。然而,與 Python 處理純文本文件不同,PDF 文件是二進製文件,結構更複雜,包含字體、顏色和圖像等元素。 幸運的是,借助 Python 的外部模塊,處理 PDF 文件並非難事。本文將使用 PyPDF2 模塊演示如何打開 PDF 文件、打印頁面和提取文本。關於 PDF 文件的創建和編輯,請參考我的另一篇教程。 準備工作 核心在於使用外部模塊 PyPDF2。首先,使用 pip 安裝它: pip 是 P

本教程演示瞭如何利用Redis緩存以提高Python應用程序的性能,特別是在Django框架內。 我們將介紹REDIS安裝,Django配置和性能比較,以突出顯示BENE

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

本教程演示了在Python 3中創建自定義管道數據結構,利用類和操作員超載以增強功能。 管道的靈活性在於它能夠將一系列函數應用於數據集的能力,GE

Python是數據科學和處理的最愛,為高性能計算提供了豐富的生態系統。但是,Python中的並行編程提出了獨特的挑戰。本教程探討了這些挑戰,重點是全球解釋


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

Dreamweaver Mac版
視覺化網頁開發工具