搜尋
首頁後端開發Python教學如何按多列對 Pandas DataFrame 進行分組和計數並找到最大計數?

How to Group and Count Pandas DataFrames by Multiple Columns and Find Maximum Counts?

以兩列將Pandas DataFrame 分組以獲得計數

考慮一個名為df 的DataFrame,其中包含列col1、col2、col3、col4 和col5,如提供的所示程式碼片段。若要根據col5 和col2 中的特定值來決定行數,請依照下列步驟操作:

依群組取得行計數:

計算每行中的出現次數基於col5 和col2 值的唯一組合,使用size() 方法,如下所示:

<code class="python">df.groupby(['col5', 'col2']).size()</code>

此操作按col5 和col2 對DataFrame 進行分組,併計算每個組內的行數。輸出將是一系列包含索引對 (col5, col2) 和對應計數的序列。

範例:

提供的程式碼片段使用df DataFrame 示範了此操作,產生以下輸出:

col5  col2
1     A       1
      D       3
2     B       2
3     A       3
      C       1
4     B       1
5     B       2
6     B       1
dtype: int64

在此輸出中,每行代表col5 和col2 的唯一組合,對應的計數表示該組合在DataFrame 中出現的次數。

找出每個col2 值的最大計數:

要確定col2 每個唯一值的最大計數,請執行以下步驟:

  1. 將DataFrame 分組為僅col2,不包含col5。
  2. 使用 size() 計算每個 col2 組的行計數。
  3. 使用分組系列上的 max() 方法來取得每個 col2 組的最大計數。

範例:

<code class="python">df.groupby(['col2']).size().groupby(level=1).max()</code>

此程式碼片段依col2 將df 分組,計算計數,然後找到每個col2 值的最大計數,結果在下列輸出中:

col2
A       3
B       2
C       1
D       3
dtype: int64

在此輸出中,每個col2 值與col2 中共享該值的最大行數相關聯。

以上是如何按多列對 Pandas DataFrame 進行分組和計數並找到最大計數?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python中的合併列表:選擇正確的方法Python中的合併列表:選擇正確的方法May 14, 2025 am 12:11 AM

Tomergelistsinpython,YouCanusethe操作員,estextMethod,ListComprehension,Oritertools

如何在Python 3中加入兩個列表?如何在Python 3中加入兩個列表?May 14, 2025 am 12:09 AM

在Python3中,可以通過多種方法連接兩個列表:1)使用 運算符,適用於小列表,但對大列表效率低;2)使用extend方法,適用於大列表,內存效率高,但會修改原列表;3)使用*運算符,適用於合併多個列表,不修改原列表;4)使用itertools.chain,適用於大數據集,內存效率高。

Python串聯列表字符串Python串聯列表字符串May 14, 2025 am 12:08 AM

使用join()方法是Python中從列表連接字符串最有效的方法。 1)使用join()方法高效且易讀。 2)循環使用 運算符對大列表效率低。 3)列表推導式與join()結合適用於需要轉換的場景。 4)reduce()方法適用於其他類型歸約,但對字符串連接效率低。完整句子結束。

Python執行,那是什麼?Python執行,那是什麼?May 14, 2025 am 12:06 AM

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python:關鍵功能是什麼Python:關鍵功能是什麼May 14, 2025 am 12:02 AM

Python的關鍵特性包括:1.語法簡潔易懂,適合初學者;2.動態類型系統,提高開發速度;3.豐富的標準庫,支持多種任務;4.強大的社區和生態系統,提供廣泛支持;5.解釋性,適合腳本和快速原型開發;6.多範式支持,適用於各種編程風格。

Python:編譯器還是解釋器?Python:編譯器還是解釋器?May 13, 2025 am 12:10 AM

Python是解釋型語言,但也包含編譯過程。 1)Python代碼先編譯成字節碼。 2)字節碼由Python虛擬機解釋執行。 3)這種混合機制使Python既靈活又高效,但執行速度不如完全編譯型語言。

python用於循環與循環時:何時使用哪個?python用於循環與循環時:何時使用哪個?May 13, 2025 am 12:07 AM

UseeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.forloopsareIdealForkNownsences,而WhileLeleLeleLeleLeleLoopSituationSituationsItuationsItuationSuationSituationswithUndEtermentersitations。

Python循環:最常見的錯誤Python循環:最常見的錯誤May 13, 2025 am 12:07 AM

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐個偏置,零indexingissues,andnestedloopineflinefficiencies

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能