首頁 >科技週邊 >人工智慧 >超強!必會的十大機器學習演算法

超強!必會的十大機器學習演算法

WBOY
WBOY原創
2024-06-10 21:53:52979瀏覽

超強!必會的十大機器學習演算法

1.線性迴歸

#線性迴歸是用於預測建模的最簡單且使用最廣泛的機器學習演算法之一。

它是一種監督學習演算法,用於根據一個或多個自變數預測因變數的值。

定義

線性迴歸的核心是根據觀察到的資料來擬合線性模型。

線性模型由下列方程式表示:

#其中

  •  是因變量(我們想要預測的變數)
  •  是自變數(我們用來進行預測的變數)
  •  是直線的斜率
  •  是y 軸截距(直線與y 軸的交點)

線性迴歸演算法涉及查找到通過資料點的最佳擬合線。這通常是透過最小化觀測值和預測值之間的平方差來完成的。

評估指標

  • 均方誤差 (MSE):測量誤差平方的平均值。值越低越好。
  • R平方:表示可以根據自變數預測的因變數變異的百分比。越接近 1 越好。
from sklearn.datasets import load_diabetesfrom sklearn.model_selection import train_test_splitfrom sklearn.linear_model import LinearRegressionfrom sklearn.metrics import mean_squared_error, r2_score# Load the Diabetes datasetdiabetes = load_diabetes()X, y = diabetes.data, diabetes.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the Linear Regression modelmodel = LinearRegression()model.fit(X_train, y_train)# Predicting the test set resultsy_pred = model.predict(X_test)# Evaluating the modelmse = mean_squared_error(y_test, y_pred)r2 = r2_score(y_test, y_pred)print("MSE is:", mse)print("R2 score is:", r2)

2.邏輯迴歸

邏輯迴歸用於分類問題。它預測給定資料點屬於某個類別的機率,例如是/否或 0/1。

評估指標
  • #準確度:準確度是正確預測的觀測值與總觀測值的比率。
  • 精確度和召回率:精確度是正確預測的正觀察值與所有預期的正觀察值的比率。召回率是正確預測的積極觀察與實際中所有觀察的比例。
  • F1 分數:召回率和精確率之間的平衡。
from sklearn.datasets import load_breast_cancerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score# Load the Breast Cancer datasetbreast_cancer = load_breast_cancer()X, y = breast_cancer.data, breast_cancer.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the Logistic Regression modelmodel = LogisticRegression(max_iter=10000)model.fit(X_train, y_train)# Predicting the test set resultsy_pred = model.predict(X_test)# Evaluating the modelaccuracy = accuracy_score(y_test, y_pred)precision = precision_score(y_test, y_pred)recall = recall_score(y_test, y_pred)f1 = f1_score(y_test, y_pred)# Print the resultsprint("Accuracy:", accuracy)print("Precision:", precision)print("Recall:", recall)print("F1 Score:", f1)

3.決策樹

#決策樹是多功能且強大的機器學習演算法,可用於分類和迴歸任務。

它們因其簡單性、可解釋性以及處理數值和分類資料的能力而廣受歡迎。

定義

決策樹由代表決策點的節點、代表可能結果的分支以及代表最終決策或預測的葉子組成。

決策樹中的每個節點對應一個特徵,分支代表該特徵的可能值。

建構決策樹的演算法涉及根據不同特徵的值遞歸地將資料集分割成子集。目標是建立同質子集,其中目標變數(我們想要預測的變數)在每個子集中都是相似的。

分割過程持續進行,直到滿足停止標準,例如達到最大深度、最小樣本數,或無法進行進一步改進。

評估指標

  • 對於分類:準確率、精確率、召回率和F1 分數
  • 對於迴歸:均方誤差(MSE)、R 平方
from sklearn.datasets import load_winefrom sklearn.tree import DecisionTreeClassifier# Load the Wine datasetwine = load_wine()X, y = wine.data, wine.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the Decision Tree modelmodel = DecisionTreeClassifier(random_state=42)model.fit(X_train, y_train)# Predicting the test set resultsy_pred = model.predict(X_test)# Evaluating the modelaccuracy = accuracy_score(y_test, y_pred)precision = precision_score(y_test, y_pred, average='macro')recall = recall_score(y_test, y_pred, average='macro')f1 = f1_score(y_test, y_pred, average='macro')# Print the resultsprint("Accuracy:", accuracy)print("Precision:", precision)print("Recall:", recall)print("F1 Score:", f1)

4.樸素貝葉斯

樸素貝葉斯分類器是一系列簡單的“機率分類器”,它們使用貝葉斯定理和特徵之間的強(樸素)獨立性假設。它特別用於文本分類。

它計算給定每個輸入值的每個類別的機率和每個類別的條件機率。然後使用這些機率根據最高機率對新值進行分類。

評估指標:

  • 準確度:衡量模型的整體正確性。
  • 精確率、召回率和 F1 分數:在類別分佈不平衡的情況下尤其重要。
from sklearn.datasets import load_digitsfrom sklearn.naive_bayes import GaussianNB# Load the Digits datasetdigits = load_digits()X, y = digits.data, digits.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the Naive Bayes modelmodel = GaussianNB()model.fit(X_train, y_train)# Predicting the test set resultsy_pred = model.predict(X_test)# Evaluating the modelaccuracy = accuracy_score(y_test, y_pred)precision = precision_score(y_test, y_pred, average='macro')recall = recall_score(y_test, y_pred, average='macro')f1 = f1_score(y_test, y_pred, average='macro')# Print the resultsprint("Accuracy:", accuracy)print("Precision:", precision)print("Recall:", recall)print("F1 Score:", f1)

5.K-最近邻(KNN)

K 最近邻 (KNN) 是一种简单直观的机器学习算法,用于分类和回归任务。

它根据输入数据点与其在特征空间中最近邻居的相似性进行预测。

在 KNN 中,新数据点的预测由其 k 个最近邻的多数类(用于分类)或平均值(用于回归)确定。KNN 中的 “k” 表示要考虑的邻居数量,这是用户选择的超参数。

算法

KNN 算法包括以下步骤

  1. 计算距离:计算新数据点与数据集中所有其他数据点之间的距离。
  2. 查找邻居:根据计算的距离选择 k 个最近邻居。
  3. 多数投票或平均:对于分类,分配 k 个邻居中出现最频繁的类标签。对于回归,计算 k 个邻居的目标变量的平均值。
  4. 进行预测:将预测的类标签或值分配给新数据点。

评估指标

  • 「分类」:准确率、精确率、召回率、F1 分数。
  • 「回归」:均方误差 (MSE)、R 平方。
from sklearn.datasets import load_winefrom sklearn.model_selection import train_test_splitfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score# Load the Wine datasetwine = load_wine()X, y = wine.data, wine.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the KNN modelknn_model = KNeighborsClassifier(n_neighbors=3)knn_model.fit(X_train, y_train)# Predicting the test set resultsy_pred_knn = knn_model.predict(X_test)# Evaluating the modelaccuracy_knn = accuracy_score(y_test, y_pred_knn)precision_knn = precision_score(y_test, y_pred_knn, average='macro')recall_knn = recall_score(y_test, y_pred_knn, average='macro')f1_knn = f1_score(y_test, y_pred_knn, average='macro')# Print the resultsprint("Accuracy:", accuracy_knn)print("Precision:", precision_knn)print("Recall:", recall_knn)print("F1 Score:", f1_knn)

6.SVM

支持向量机 (SVM) 是一种强大的监督学习算法,用于分类和回归任务。

它们在高维空间中特别有效,广泛应用于图像分类、文本分类和生物信息学等各个领域。

算法原理

支持向量机的工作原理是找到最能将数据分为不同类别的超平面。

选择超平面以最大化边距,即超平面与每个类的最近数据点(支持向量)之间的距离。

SVM 还可以通过使用核函数将输入空间转换为可以线性分离的高维空间来处理非线性数据。

训练 SVM 的算法包括以下步骤:

  1. 数据准备:预处理数据并根据需要对分类变量进行编码。
  2. 选择核:选择合适的核函数,例如线性、多项式或径向基函数 (RBF)。
  3. 模型训练:通过寻找使类之间的间隔最大化的超平面来训练 SVM。
  4. 模型评估:使用交叉验证或保留验证集评估 SVM 的性能。

评估指标

  • 「分类」:准确率、精确率、召回率、F1 分数。
  • 「回归」:均方误差 (MSE)、R 平方。
from sklearn.svm import SVCbreast_cancer = load_breast_cancer()X, y = breast_cancer.data, breast_cancer.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the SVM modelsvm_model = SVC()svm_model.fit(X_train, y_train)# Predicting the test set resultsy_pred_svm = svm_model.predict(X_test)# Evaluating the modelaccuracy_svm = accuracy_score(y_test, y_pred_svm)precision_svm = precision_score(y_test, y_pred_svm, average='macro')recall_svm = recall_score(y_test, y_pred_svm, average='macro')f1_svm = f1_score(y_test, y_pred_svm, average='macro')accuracy_svm, precision_svm, recall_svm, f1_svm# Print the resultsprint("Accuracy:", accuracy_svm)print("Precision:", precision_svm)print("Recall:", recall_svm)print("F1 Score:", f1_svm)

7.随机森林

随机森林是一种集成学习技术,它结合了多个决策树来提高预测性能并减少过度拟合。

它们广泛用于分类和回归任务,并以其鲁棒性和多功能性而闻名。

算法步骤

随机森林是根据数据集的随机子集并使用特征的随机子集进行训练的决策树的集合。

森林中的每棵决策树独立地进行预测,最终的预测是通过聚合所有树的预测来确定的。

构建随机森林的算法包括以下步骤

  1. 随机采样:从数据集中随机选择样本子集(带替换)来训练每棵树。
  2. 特征随机化:随机选择每个节点的特征子集以考虑分割。
  3. 树构建:使用采样数据和特征构建多个决策树。
  4. 投票或平均:聚合所有树的预测以做出最终预测。

评估指标

  • 分类:准确率、精确率、召回率、F1 分数。
  • 回归:均方误差 (MSE)、R 平方。
from sklearn.ensemble import RandomForestClassifierbreast_cancer = load_breast_cancer()X, y = breast_cancer.data, breast_cancer.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the Random Forest modelrf_model = RandomForestClassifier(random_state=42)rf_model.fit(X_train, y_train)# Predicting the test set resultsy_pred_rf = rf_model.predict(X_test)# Evaluating the modelaccuracy_rf = accuracy_score(y_test, y_pred_rf)precision_rf = precision_score(y_test, y_pred_rf, average='macro')recall_rf = recall_score(y_test, y_pred_rf, average='macro')f1_rf = f1_score(y_test, y_pred_rf, average='macro')# Print the resultsprint("Accuracy:", accuracy)print("Precision:", precision)print("Recall:", recall)print("F1 Score:", f1)

8.K-均值聚类

K 均值聚类是一种无监督学习算法,用于将数据分组为 “K” 个聚类。确定 k 个质心后,每个数据点被分配到最近的簇。

该算法将数据点分配给一个簇,使得数据点与簇质心之间的平方距离之和最小。

评估指标

  • 「惯性」:样本到最近聚类中心的总平方距离称为惯性。值越低越好。
  • 「Silhouette Score」:表示一个项目属于其自身集群的紧密程度。高轮廓分数意味着该项目与其自身的集群匹配良好,而与附近的集群匹配不佳。轮廓得分从 -1 到 1。
from sklearn.datasets import load_irisfrom sklearn.cluster import KMeansfrom sklearn.metrics import silhouette_score# Load the Iris datasetiris = load_iris()X = iris.data# Applying K-Means Clusteringkmeans = KMeans(n_clusters=3, random_state=42)kmeans.fit(X)# Predicting the cluster for each data pointy_pred_clusters = kmeans.predict(X)# Evaluating the modelinertia = kmeans.inertia_silhouette = silhouette_score(X, y_pred_clusters)print("Inertia:", inertia)print("Silhouette:", silhouette)

9.PCA

降维是通过使用主成分分析 (PCA) 来完成的。它将数据转换为新的坐标系,减少变量数量,同时尽可能多地保留原始数据的变化。

使用 PCA 可以找到使数据方差最大化的主要成分或轴。第一个主成分捕获最大方差,第二个主成分(与第一个主成分正交)捕获第二大方差,依此类推。

评估指标

  • 「解释方差」:表示每个主成分捕获的数据方差有多少。
  • 「总解释方差」:由所选主成分解释的累积方差。
from sklearn.datasets import load_breast_cancerfrom sklearn.decomposition import PCAimport numpy as np# Load the Breast Cancer datasetbreast_cancer = load_breast_cancer()X = breast_cancer.data# Applying PCApca = PCA(n_compnotallow=2)# Reducing to 2 dimensions for simplicitypca.fit(X)# Transforming the dataX_pca = pca.transform(X)# Explained Varianceexplained_variance = pca.explained_variance_ratio_# Total Explained Variancetotal_explained_variance = np.sum(explained_variance)print("Explained variance:", explained_variance)print("Total Explained Variance:", total_explained_variance)

10.梯度提升算法

梯度提升是一种先进的机器学习技术。它依次构建多个弱预测模型(通常是决策树)。每个新模型都逐渐最小化整个模型的损失函数(误差)。

评估指标

  • 「对于分类」:准确率、精确率、召回率、F1 分数。
  • 「对于回归」:均方误差 (MSE)、R 平方。
from sklearn.datasets import load_diabetesfrom sklearn.ensemble import GradientBoostingRegressorfrom sklearn.metrics import mean_squared_error, r2_score# Load the Diabetes datasetdiabetes = load_diabetes()X, y = diabetes.data, diabetes.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the Gradient Boosting modelgb_model = GradientBoostingRegressor(random_state=42)gb_model.fit(X_train, y_train)# Predicting the test set resultsy_pred_gb = gb_model.predict(X_test)# Evaluating the modelmse_gb = mean_squared_error(y_test, y_pred_gb)r2_gb = r2_score(y_test, y_pred_gb)print("MSE:", mse_gb)


以上是超強!必會的十大機器學習演算法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn