Pengenalan
Sains data telah muncul dari hari ke hari dan telah digunakan secara meluas dalam pelbagai industri. pandas ialah sumber terbukaperpustakaan untuk manipulasi dan pemodelan data, menjadikannya alat yang berharga untuk saintis data. Dalam artikel ini, kami akan meneroka cara menggunakan Panda untuk penerokaan dan pemodelan data.
Penerokaan Data
Penerokaan data ialah langkah pertama yang penting dalam proses sains data, yang membolehkan kami memahami data secara intuitif. Menggunakan Panda, kami boleh memuatkan data dan melihat kandungannya.
import numpy as np import numpy as np import matplotlib.pyplot as plts data = pd.read_csv("data.csv")
Output jadual menyediakan perspektif tentang data, manakala carta membantu kami memvisualisasikandata untuk mencari arah aliran dan pencilan.
data.head() data.hist() plt.show()
Praprosesan data
Sebelum memodelkan data, prapemprosesan data biasanya diperlukan untuk memastikan integriti dan konsistensi data. Ini mungkin melibatkan pembersihan nilai yang hilang, menyeragamkan ciri atau menukar data kategori kepada bentuk berangka yang boleh dilatih pada model.
data.dropna(inplace=True) data = (data - data.min()) / (data.max() - data.min()) data["cateGory"] = data["category].astype("category")
Pemodelan Data
Setelah data siap, kita boleh mula membuat model. Pandas mempunyai sokongan terbina dalam untuk pelbagai perpustakaan untuk pemodelan statistik biasa, seperti regresi linear, regresi logistik dan pepohon keputusan.
from sklearn.linear_model import LoGISticRegression model = LogisticRegression() model.fit(data[["feature1", "feature2"]], data["target"])
Penilaian model
Selepas melatih model, langkah seterusnya ialah menilai prestasinya. Kita boleh menggunakan metrik penilaian seperti matriks kekeliruan, ketepatan, ingat semula, skor F1, dsb.
import sklearn.matrics as metics predictions = model.predict(x_test) print(metices.confusion_matrix(y_test, predictions)) print(metices.accuracy_score(y_test, predictions))
Ringkasan
Menggunakan Panda untuk penerokaan dan pemodelan data adalah asas kepada proses sains data. Sintaks intuitif Pandas dan sokongan terbina dalam untuk perpustakaan pemodelan statistik menjadikannya sesuai untuk melakukan sains data dengan cepat dan cekap. Sambil kami terus maju dalam bidang sains data, kekal mahir dalam Panda akan memberi manfaat besar kepada kami semasa kami menavigasi landskap cerapan terdorong data yang sentiasa berubah dan mendorong pembuatan keputusan.
Atas ialah kandungan terperinci Analisis Data Python: Penerokaan dan Ramalan Data. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan