


Cara menggunakan model hibrid CNN dan Transformer untuk meningkatkan prestasi
Convolutional Neural Network (CNN) dan Transformer ialah dua model pembelajaran mendalam berbeza yang telah menunjukkan prestasi cemerlang pada tugasan berbeza. CNN digunakan terutamanya untuk tugas penglihatan komputer seperti klasifikasi imej, pengesanan sasaran dan pembahagian imej. Ia mengekstrak ciri tempatan pada imej melalui operasi lilitan, dan melakukan pengurangan dimensi ciri dan invarian ruang melalui operasi pengumpulan. Sebaliknya, Transformer digunakan terutamanya untuk tugas pemprosesan bahasa semula jadi (NLP) seperti terjemahan mesin, klasifikasi teks dan pengecaman pertuturan. Ia menggunakan mekanisme perhatian kendiri untuk memodelkan kebergantungan dalam jujukan, mengelakkan pengiraan berjujukan dalam rangkaian saraf berulang tradisional. Walaupun kedua-dua model ini digunakan untuk tugas yang berbeza, ia mempunyai persamaan dalam pemodelan jujukan, jadi menggabungkannya boleh dipertimbangkan untuk mencapai prestasi yang lebih baik. Contohnya, dalam tugas penglihatan komputer, Transformer boleh digunakan untuk menggantikan lapisan penggabungan CNN untuk menangkap maklumat konteks global dengan lebih baik. Dalam tugas pemprosesan bahasa semula jadi, CNN boleh digunakan untuk mengekstrak ciri tempatan dalam teks, dan kemudian Transformer boleh digunakan untuk memodelkan kebergantungan global. Kaedah menggabungkan CNN dan Transformer ini telah mencapai keputusan yang baik dalam beberapa kajian. Dengan menggabungkan kelebihan mereka antara satu sama lain, model pembelajaran mendalam boleh dipertingkatkan lagi
Berikut adalah beberapa cara untuk memodenkan CNN agar sepadan dengan Transformer:
1 Mekanisme perhatian diri
Model Transformer. ialah mekanisme perhatian kendiri, yang boleh mencari maklumat yang relevan dalam urutan input dan mengira kepentingan setiap kedudukan. Begitu juga, dalam CNN, kita boleh menggunakan kaedah yang sama untuk meningkatkan prestasi model. Sebagai contoh, kita boleh memperkenalkan mekanisme "perhatian kendiri merentas saluran" dalam lapisan konvolusi untuk menangkap korelasi antara saluran yang berbeza. Melalui kaedah ini, model CNN dapat memahami dengan lebih baik hubungan kompleks dalam data input, seterusnya meningkatkan prestasi model.
2. Pengekodan kedudukan
Dalam Transformer, pengekodan kedudukan ialah teknik yang digunakan untuk membenamkan maklumat kedudukan ke dalam urutan input. Dalam CNN, teknik serupa juga boleh digunakan untuk menambah baik model. Sebagai contoh, benam kedudukan boleh ditambah pada setiap lokasi piksel imej input untuk meningkatkan prestasi CNN semasa memproses maklumat spatial.
3. Pemprosesan berbilang skala
Rangkaian saraf konvolusi biasanya menggunakan kernel lilitan bersaiz tetap untuk memproses data input. Dalam Transformer, anda boleh menggunakan pemprosesan berbilang skala untuk mengendalikan jujukan input dengan saiz yang berbeza. Dalam CNN, pendekatan serupa juga boleh digunakan untuk memproses imej input dengan saiz yang berbeza. Sebagai contoh, biji lilitan saiz berbeza boleh digunakan untuk memproses sasaran saiz berbeza untuk meningkatkan prestasi model.
4. Pengumpulan berasaskan perhatian
Dalam CNN, operasi pengumpulan biasanya digunakan untuk mengurangkan saiz dan bilangan peta ciri untuk mengurangkan kos pengiraan dan penggunaan memori. Walau bagaimanapun, operasi pengumpulan tradisional mengabaikan beberapa maklumat berguna dan oleh itu boleh mengurangkan prestasi model. Dalam Transformer, mekanisme perhatian kendiri boleh digunakan untuk menangkap maklumat berguna dalam urutan input. Dalam CNN, pengumpulan berasaskan perhatian boleh digunakan untuk menangkap maklumat yang serupa. Sebagai contoh, gunakan mekanisme perhatian kendiri dalam operasi pengumpulan untuk memilih ciri yang paling penting dan bukannya purata atau memaksimumkan nilai ciri.
5 Model campuran
CNN dan Transformer ialah dua model berbeza yang telah menunjukkan prestasi cemerlang pada tugasan yang berbeza. Dalam sesetengah kes, mereka boleh digabungkan untuk mencapai prestasi yang lebih baik. Contohnya, dalam tugas pengelasan imej, CNN boleh digunakan untuk mengekstrak ciri imej dan Transformer boleh digunakan untuk mengklasifikasikan ciri ini. Dalam kes ini, kelebihan kedua-dua CNN dan Transformer boleh dieksploitasi sepenuhnya untuk mencapai prestasi yang lebih baik.
6. Pengiraan adaptif
Dalam Transformer, apabila menggunakan mekanisme perhatian kendiri, setiap kedudukan perlu mengira persamaan dengan semua kedudukan lain. Ini bermakna kos pengiraan meningkat secara eksponen dengan panjang jujukan input. Untuk menyelesaikan masalah ini, teknologi pengiraan adaptif boleh digunakan, contohnya, hanya mengira persamaan lokasi lain dalam jarak tertentu dari lokasi semasa. Dalam CNN, teknik serupa juga boleh digunakan untuk mengurangkan kos pengiraan.
Ringkasnya, CNN dan Transformer ialah dua model pembelajaran mendalam berbeza yang telah menunjukkan prestasi cemerlang pada tugasan yang berbeza. Walau bagaimanapun, dengan menggabungkannya, prestasi yang lebih baik boleh dicapai. Beberapa kaedah termasuk menggunakan teknik seperti perhatian kendiri, pengekodan kedudukan, pemprosesan berbilang skala, pengumpulan berasaskan perhatian, model hibrid dan pengkomputeran penyesuaian. Teknik ini boleh memodenkan CNN untuk memadankan prestasi Transformer dalam pemodelan jujukan dan meningkatkan prestasi CNN dalam tugas penglihatan komputer. Selain teknik ini, terdapat cara lain untuk memodenkan CNN, seperti menggunakan teknik seperti lilitan boleh dipisahkan secara mendalam, sambungan baki dan penormalan kelompok untuk meningkatkan prestasi dan kestabilan model. Apabila menggunakan kaedah ini untuk CNN, ciri tugas dan ciri data perlu dipertimbangkan untuk memilih kaedah dan teknik yang paling sesuai.
Atas ialah kandungan terperinci Cara menggunakan model hibrid CNN dan Transformer untuk meningkatkan prestasi. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Memanfaatkan kuasa AI di peranti: Membina CLI Chatbot Peribadi Pada masa lalu, konsep pembantu AI peribadi kelihatan seperti fiksyen sains. Bayangkan Alex, seorang peminat teknologi, bermimpi seorang sahabat AI yang pintar, yang tidak bergantung

Pelancaran AI4MH mereka berlaku pada 15 April, 2025, dan Luminary Dr. Tom Insel, M.D., pakar psikiatri yang terkenal dan pakar neurosains, berkhidmat sebagai penceramah kick-off. Dr. Insel terkenal dengan kerja cemerlangnya dalam penyelidikan kesihatan mental dan techno

"Kami mahu memastikan bahawa WNBA kekal sebagai ruang di mana semua orang, pemain, peminat dan rakan kongsi korporat, berasa selamat, dihargai dan diberi kuasa," kata Engelbert, menangani apa yang telah menjadi salah satu cabaran sukan wanita yang paling merosakkan. Anno

Pengenalan Python cemerlang sebagai bahasa pengaturcaraan, terutamanya dalam sains data dan AI generatif. Manipulasi data yang cekap (penyimpanan, pengurusan, dan akses) adalah penting apabila berurusan dengan dataset yang besar. Kami pernah meliputi nombor dan st

Sebelum menyelam, kaveat penting: Prestasi AI adalah spesifik yang tidak ditentukan dan sangat digunakan. Dalam istilah yang lebih mudah, perbatuan anda mungkin berbeza -beza. Jangan ambil artikel ini (atau lain -lain) sebagai perkataan akhir -sebaliknya, uji model ini pada senario anda sendiri

Membina portfolio AI/ML yang menonjol: Panduan untuk Pemula dan Profesional Mewujudkan portfolio yang menarik adalah penting untuk mendapatkan peranan dalam kecerdasan buatan (AI) dan pembelajaran mesin (ML). Panduan ini memberi nasihat untuk membina portfolio

Hasilnya? Pembakaran, ketidakcekapan, dan jurang yang melebar antara pengesanan dan tindakan. Tak satu pun dari ini harus datang sebagai kejutan kepada sesiapa yang bekerja dalam keselamatan siber. Janji Agentic AI telah muncul sebagai titik perubahan yang berpotensi. Kelas baru ini

Impak segera berbanding perkongsian jangka panjang? Dua minggu yang lalu Openai melangkah ke hadapan dengan tawaran jangka pendek yang kuat, memberikan akses kepada pelajar A.S. dan Kanada.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma