Rumah > Artikel > pembangunan bahagian belakang > Python melaksanakan klasifikasi mesin vektor sokongan (SVM): penjelasan terperinci tentang prinsip algoritma
Dalam pembelajaran mesin, mesin vektor sokongan (SVM) sering digunakan untuk klasifikasi data dan analisis regresi Ia adalah model algoritma diskriminan berdasarkan pengasingan hyperplanes. Dalam erti kata lain, memandangkan data latihan berlabel, algoritma mengeluarkan hyperplane optimum untuk mengklasifikasikan contoh baharu.
Model algoritma mesin vektor sokongan (SVM) mewakili contoh sebagai titik dalam ruang Selepas pemetaan, contoh kategori berbeza dibahagikan sebanyak mungkin. Selain melaksanakan pengelasan linear, mesin vektor sokongan (SVM) boleh melaksanakan pengelasan tak linear dengan cekap, secara tersirat memetakan input mereka ke dalam ruang ciri berdimensi tinggi.
Memandangkan satu set contoh latihan, setiap contoh latihan ditandakan dengan kategori mengikut 2 kategori, dan kemudian model dibina melalui algoritma latihan mesin vektor sokongan (SVM), dan contoh baharu diberikan kepada 2 kategori ini, jadi bahawa Ia menjadi pengelas linear binari bukan probabilistik.
Prasyarat: Numpy, Pandas, matplot-lib, scikit-learn
Mula-mula, buat set data
from sklearn.datasets.samples_generator import make_blobs X,Y=make_blobs(n_samples=500,centers=2, random_state=0,cluster_std=0.40) import matplotlib.pyplot as plt plt.scatter(X[:,0],X[:,1],c=Y,s=50,cmap='spring'); plt.show()
Klasifikasi
rreeeAtas ialah kandungan terperinci Python melaksanakan klasifikasi mesin vektor sokongan (SVM): penjelasan terperinci tentang prinsip algoritma. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!