Rumah >pembangunan bahagian belakang >Tutorial Python >Python melaksanakan klasifikasi mesin vektor sokongan (SVM): penjelasan terperinci tentang prinsip algoritma

Python melaksanakan klasifikasi mesin vektor sokongan (SVM): penjelasan terperinci tentang prinsip algoritma

WBOY
WBOYke hadapan
2024-01-24 09:33:051124semak imbas

支持向量机(SVM)算法原理 Python实现支持向量机(SVM)分类

Dalam pembelajaran mesin, mesin vektor sokongan (SVM) sering digunakan untuk klasifikasi data dan analisis regresi Ia adalah model algoritma diskriminan berdasarkan pengasingan hyperplanes. Dalam erti kata lain, memandangkan data latihan berlabel, algoritma mengeluarkan hyperplane optimum untuk mengklasifikasikan contoh baharu.

Model algoritma mesin vektor sokongan (SVM) mewakili contoh sebagai titik dalam ruang Selepas pemetaan, contoh kategori berbeza dibahagikan sebanyak mungkin. Selain melaksanakan pengelasan linear, mesin vektor sokongan (SVM) boleh melaksanakan pengelasan tak linear dengan cekap, secara tersirat memetakan input mereka ke dalam ruang ciri berdimensi tinggi.

Apakah yang dilakukan oleh mesin vektor sokongan?

Memandangkan satu set contoh latihan, setiap contoh latihan ditandakan dengan kategori mengikut 2 kategori, dan kemudian model dibina melalui algoritma latihan mesin vektor sokongan (SVM), dan contoh baharu diberikan kepada 2 kategori ini, jadi bahawa Ia menjadi pengelas linear binari bukan probabilistik.

Python melaksanakan klasifikasi mesin vektor sokongan (SVM)

Prasyarat: Numpy, Pandas, matplot-lib, scikit-learn

Mula-mula, buat set data

from sklearn.datasets.samples_generator import make_blobs
X,Y=make_blobs(n_samples=500,centers=2,
random_state=0,cluster_std=0.40)
import matplotlib.pyplot as plt
plt.scatter(X[:,0],X[:,1],c=Y,s=50,cmap='spring');
plt.show()

Klasifikasi

rreee

Atas ialah kandungan terperinci Python melaksanakan klasifikasi mesin vektor sokongan (SVM): penjelasan terperinci tentang prinsip algoritma. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Artikel ini dikembalikan pada:163.com. Jika ada pelanggaran, sila hubungi admin@php.cn Padam