


Pandas ialah alat pemprosesan dan analisis data yang berkuasa Ia menyediakan banyak fungsi dan kaedah yang fleksibel untuk menapis dan memproses data dengan mudah. Artikel ini akan memperkenalkan beberapa teknik lanjutan untuk penapisan data Pandas dan memberikan contoh kod khusus melalui kes sebenar.
1. Penapisan data asas
Panda menyediakan pelbagai kaedah untuk melakukan penapisan asas data, seperti menggunakan indeks Boolean, kaedah loc atau iloc, dsb. Berikut ialah beberapa kes penapisan data asas biasa.
- Penapisan indeks Boolean
Indeks Boolean boleh digunakan untuk menapis data berdasarkan syarat tertentu. Sebagai contoh, kami mempunyai bingkai data yang mengandungi maklumat pelajar dan kami ingin menapis pelajar dengan skor lebih daripada 60 mata. Ia boleh dilaksanakan menggunakan kod berikut:
import pandas as pd data = { '姓名': ['张三', '李四', '王五', '赵六'], '成绩': [80, 70, 90, 50] } df = pd.DataFrame(data) df_filtered = df[df['成绩'] > 60] print(df_filtered)
- penapisan kaedah loc
kaedah loc boleh menapis data berdasarkan label baris dan label lajur. Sebagai contoh, kami mempunyai bingkai data yang mengandungi maklumat pelajar dan kami ingin menapis gred dan umur pelajar bernama Zhang San dan Li Si. Ini boleh dicapai menggunakan kod berikut:
import pandas as pd data = { '姓名': ['张三', '李四', '王五', '赵六'], '成绩': [80, 70, 90, 50], '年龄': [18, 19, 20, 21] } df = pd.DataFrame(data) df_filtered = df.loc[df['姓名'].isin(['张三', '李四']), ['成绩', '年龄']] print(df_filtered)
2. Penapisan data lanjutan
Selain kaedah penapisan data asas, Pandas juga menyediakan banyak teknik penapisan data lanjutan, seperti menggunakan kaedah pertanyaan dan menggunakan objek indeks MultiIndex untuk berbilang -penapisan peringkat. Di bawah adalah beberapa ilustrasi kes.
- penapisan kaedah pertanyaan
kaedah pertanyaan boleh menapis data melalui sintaks seperti SQL. Sebagai contoh, kami mempunyai bingkai data yang mengandungi maklumat pelajar dan kami ingin menapis pelajar yang markahnya melebihi 60 dan berumur antara 18 dan 20 tahun. Anda boleh menggunakan kod berikut untuk mencapai ini:
import pandas as pd data = { '姓名': ['张三', '李四', '王五', '赵六'], '成绩': [80, 70, 90, 50], '年龄': [18, 19, 20, 21] } df = pd.DataFrame(data) df_filtered = df.query('成绩 > 60 and 18 <= 年龄 <= 20') print(df_filtered)
- Gunakan penapisan MultiIndex
Jika bingkai data mempunyai berbilang peringkat indeks, anda boleh menggunakan objek MultiIndex untuk penapisan berbilang peringkat. Sebagai contoh, kami mempunyai bingkai data yang mengandungi maklumat pelajar Indeks termasuk dua peringkat: kelas dan nombor pelajar. Ini boleh dicapai menggunakan kod berikut:
import pandas as pd data = { '姓名': ['张三', '李四', '王五', '赵六'], '成绩': [80, 70, 90, 50], } index = pd.MultiIndex.from_tuples([('1班', '001'), ('1班', '002'), ('2班', '001'), ('2班', '002')]) df = pd.DataFrame(data, index=index) df_filtered = df.loc[('1班', ['001', '002']), :] print(df_filtered)
3. Analisis Kes
Kini kami mengambil set data sebenar sebagai contoh untuk menggambarkan lagi teknik lanjutan penapisan data Pandas. Katakan kita mempunyai set data jualan kereta, yang mengandungi maklumat seperti jenama kenderaan, model, volum jualan dan volum jualan. Kami mahu menapis model dengan jualan lebih daripada 1,000 unit dan jualan lebih daripada 1 juta. Berikut ialah contoh kod:
import pandas as pd data = { '品牌': ['宝马', '奥迪', '奔驰', '大众'], '型号': ['X3', 'A6', 'E级', '朗逸'], '销售量': [1200, 800, 1500, 900], '销售额': [1200, 900, 1800, 800] } df = pd.DataFrame(data) df_filtered = df.query('销售量 > 1000 and 销售额 > 1000000') print(df_filtered)
Melalui kod di atas, kami berjaya menapis model dengan jualan lebih daripada 1,000 unit dan jualan lebih daripada 1 juta yuan.
Ringkasnya, Pandas menyediakan pelbagai fungsi dan kaedah penapisan data, daripada indeks Boolean asas, kaedah loc dan iloc kepada kaedah pertanyaan lanjutan dan penapisan MultiIndex, yang boleh memenuhi keperluan penapisan data dalam senario yang berbeza. Kes di atas menunjukkan beberapa teknik dan aplikasi penapisan data biasa, dan berharap dapat membantu pembaca dalam aplikasi praktikal.
Atas ialah kandungan terperinci Teknik lanjutan dan aplikasi praktikal penapisan data Pandas. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Memuatkan Fail Pickle di Python 3.6 Kesalahan Laporan Alam Sekitar: ModulenotFoundError: Nomodulenamed ...


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

Dreamweaver Mac版
Alat pembangunan web visual