cari
Rumahpembangunan bahagian belakangTutorial PythonAlat analisis data Pandas: pelajari teknik penduaan dan tingkatkan kecekapan pemprosesan data

Alat analisis data Pandas: pelajari teknik penduaan dan tingkatkan kecekapan pemprosesan data

Panda artifak pemprosesan data: Kuasai kaedah pendua dan tingkatkan kecekapan analisis data

[Pengenalan]
Dalam proses analisis data, kita sering menghadapi situasi di mana data mengandungi nilai pendua. Nilai pendua ini bukan sahaja akan menjejaskan ketepatan keputusan analisis data, tetapi juga mengurangkan kecekapan analisis. Untuk menyelesaikan masalah ini, Pandas menyediakan banyak kaedah deduplikasi yang boleh membantu kita menangani nilai pendua dengan cekap. Artikel ini akan memperkenalkan beberapa kaedah penyahduplikasian yang biasa digunakan dan menyediakan contoh kod khusus, dengan harapan dapat membantu semua orang menguasai keupayaan pemprosesan data Panda dengan lebih baik dan meningkatkan kecekapan analisis data.

【Umum】
Artikel ini akan memfokuskan pada aspek berikut:

  1. Mengalih keluar baris pendua
  2. Mengalih keluar lajur pendua
  3. Penyahduplikasian berdasarkan nilai lajur
  4. Penyahduplikasi berdasarkan syarat
【Teks 】

    Alih keluar baris pendua
  1. Semasa proses analisis data, kami sering menghadapi situasi di mana baris yang sama dimasukkan dalam set data. Untuk mengalih keluar baris pendua ini, anda boleh menggunakan kaedah drop_duplicates() dalam Panda. Berikut ialah contoh:
    drop_duplicates()方法。下面是一个示例:
import pandas as pd

# 创建数据集
data = {'A': [1, 2, 3, 4, 1],
        'B': [5, 6, 7, 8, 5]}
df = pd.DataFrame(data)

# 去除重复行
df.drop_duplicates(inplace=True)

print(df)

运行结果如下所示:

   A  B
0  1  5
1  2  6
2  3  7
3  4  8
  1. 去除重复列
    有时候,我们可能会遇到数据集中包含相同列的情况。为了去除这些重复列,可以使用Pandas中的T属性和drop_duplicates()方法。下面是一个示例:
import pandas as pd

# 创建数据集
data = {'A': [1, 2, 3, 4, 5],
        'B': [5, 6, 7, 8, 9],
        'C': [1, 2, 3, 4, 5]}
df = pd.DataFrame(data)

# 去除重复列
df = df.T.drop_duplicates().T

print(df)

运行结果如下所示:

   A  B
0  1  5
1  2  6
2  3  7
3  4  8
4  5  9
  1. 基于列值的去重
    有时候,我们需要根据某一列的值来进行去重操作。可以使用Pandas中的duplicated()方法和~运算符来实现。下面是一个示例:
import pandas as pd

# 创建数据集
data = {'A': [1, 2, 3, 1, 2],
        'B': [5, 6, 7, 8, 9]}
df = pd.DataFrame(data)

# 基于列A的值进行去重
df = df[~df['A'].duplicated()]

print(df)

运行结果如下所示:

   A  B
0  1  5
1  2  6
2  3  7
  1. 基于条件的去重
    有时候,在进行数据分析时,我们可能需要根据某些条件对数据进行去重操作。Pandas提供了drop_duplicates()方法的subset参数,可以实现基于条件的去重操作。下面是一个示例:
import pandas as pd

# 创建数据集
data = {'A': [1, 2, 3, 1, 2],
        'B': [5, 6, 7, 8, 9]}
df = pd.DataFrame(data)

# 基于列B的值进行去重,但只保留A列值为1的行
df = df.drop_duplicates(subset=['B'], keep='first')

print(df)

运行结果如下所示:

   A  B
0  1  5
1  2  6
  1. 基于索引的去重
    有时候,在对数据进行处理时,我们可能会遇到索引重复的情况。Pandas提供了duplicated()drop_duplicates()方法的keep
    import pandas as pd
    
    # 创建数据集
    data = {'A': [1, 2, 3, 4, 5]}
    df = pd.DataFrame(data, index=[1, 1, 2, 2, 3])
    
    # 基于索引进行去重,保留最后一次出现的数值
    df = df[~df.index.duplicated(keep='last')]
    
    print(df)
  2. Hasil larian adalah seperti berikut:
   A
1  2
2  4
3  5

    Alih keluar lajur pendua

    Kadangkala, kita mungkin menghadapi situasi di mana set data mengandungi lajur yang sama. Untuk mengalih keluar lajur pendua ini, anda boleh menggunakan kaedah T dan drop_duplicates() dalam Panda. Berikut adalah contoh:


    rrreee

    Hasil larian adalah seperti berikut: 🎜rrreee
      🎜Penyahduplikasi berdasarkan nilai lajur🎜Kadangkala, kita perlu melakukan penyahduplikasian berdasarkan nilai lajur tertentu. Ini boleh dicapai menggunakan kaedah duplicated() dan operator ~ dalam Pandas. Berikut adalah contoh: 🎜🎜rrreee🎜Hasil berjalan adalah seperti berikut: 🎜rrreee
        🎜Penyahduplikasi berasaskan keadaan🎜Kadangkala, semasa melakukan analisis data, kita mungkin perlu menganalisis data berdasarkan syarat tertentu Laksanakan operasi deduplikasi. Pandas menyediakan parameter subset kaedah drop_duplicates(), yang boleh melaksanakan operasi penyahduaan berasaskan syarat. Berikut ialah contoh: 🎜🎜rrreee🎜Hasil larian adalah seperti berikut: 🎜rrreee
          🎜Penyahduplikasi berasaskan indeks🎜Kadangkala, semasa memproses data, kita mungkin menghadapi keadaan indeks pendua. Pandas menyediakan parameter simpan kaedah duplicated() dan drop_duplicates(), yang boleh melaksanakan operasi penduaan berasaskan indeks. Berikut adalah contoh: 🎜🎜rrreee🎜Hasil larian adalah seperti berikut: 🎜rrreee🎜[Kesimpulan]🎜Melalui pengenalan dan contoh kod artikel ini, kita dapat melihat bahawa Pandas menyediakan banyak kaedah penyahduplikasian yang boleh membantu kita memprosesnya dengan cekap Menduakan nilai dalam data. Menguasai kaedah ini dapat meningkatkan kecekapan dalam proses analisis data dan memperoleh hasil analisis yang tepat. Saya harap artikel ini akan membantu semua orang untuk mempelajari keupayaan pemprosesan data Pandas. 🎜

Atas ialah kandungan terperinci Alat analisis data Pandas: pelajari teknik penduaan dan tingkatkan kecekapan pemprosesan data. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Python vs C: Aplikasi dan kes penggunaan dibandingkanPython vs C: Aplikasi dan kes penggunaan dibandingkanApr 12, 2025 am 12:01 AM

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Rancangan Python 2 jam: Pendekatan yang realistikRancangan Python 2 jam: Pendekatan yang realistikApr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python: meneroka aplikasi utamanyaPython: meneroka aplikasi utamanyaApr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Berapa banyak python yang boleh anda pelajari dalam 2 jam?Berapa banyak python yang boleh anda pelajari dalam 2 jam?Apr 09, 2025 pm 04:33 PM

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam?Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam?Apr 02, 2025 am 07:18 AM

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah?Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah?Apr 02, 2025 am 07:15 AM

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Apa yang perlu saya lakukan jika modul '__builtin__' tidak dijumpai apabila memuatkan fail acar di Python 3.6?Apa yang perlu saya lakukan jika modul '__builtin__' tidak dijumpai apabila memuatkan fail acar di Python 3.6?Apr 02, 2025 am 07:12 AM

Memuatkan Fail Pickle di Python 3.6 Kesalahan Laporan Alam Sekitar: ModulenotFoundError: Nomodulenamed ...

Bagaimana untuk meningkatkan ketepatan segmentasi kata Jieba dalam analisis komen tempat yang indah?Bagaimana untuk meningkatkan ketepatan segmentasi kata Jieba dalam analisis komen tempat yang indah?Apr 02, 2025 am 07:09 AM

Bagaimana untuk menyelesaikan masalah segmentasi kata Jieba dalam analisis komen tempat yang indah? Semasa kami mengadakan komen dan analisis tempat yang indah, kami sering menggunakan alat segmentasi perkataan jieba untuk memproses teks ...

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

MinGW - GNU Minimalis untuk Windows

MinGW - GNU Minimalis untuk Windows

Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

SublimeText3 Linux versi baharu

SublimeText3 Linux versi baharu

SublimeText3 Linux versi terkini

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.