Rumah >Peranti teknologi >AI >Algoritma yang biasa digunakan dalam analisis masa semuanya ada di sini
Analisis siri masa adalah menggunakan ciri-ciri peristiwa dalam tempoh masa lalu untuk meramalkan ciri-ciri peristiwa pada tempoh masa hadapan. Ini adalah masalah pemodelan ramalan yang agak kompleks yang berbeza daripada ramalan model analisis regresi. Model siri masa bergantung pada susunan peristiwa yang berlaku Nilai-nilai yang sama saiz akan menghasilkan keputusan yang berbeza apabila urutan itu diubah masalah siri masa semuanya dianggap sebagai masalah regresi, tetapi kaedah regresi (regresi linear, model pokok , pembelajaran mendalam, dsb.) terdapat perbezaan tertentu.
Analisis pemasaan termasuk analisis pemasaan statik (STA) dan analisis pemasaan dinamik.
Berikut ialah beberapa algoritma analisis pemasaan biasa
1 Analisis pemasaan pembelajaran mendalam
RNN (Rangkaian Neural Berulang)Kaedah ini boleh menghafal masa dan sesuai untuk menyelesaikan masalah dengan selang masa yang singkat dalam siri masa
Keburukan:Data langkah panjang terdedah kepada masalah letupan kecerunan LS🜜TM. (Rangkaian Ingatan Jangka Pendek Panjang)
LSTM (Memori Jangka Pendek Panjang) ialah rangkaian neural berulang temporal yang direka untuk menyelesaikan masalah pergantungan jangka panjang yang wujud dalam rangkaian saraf berulang konvensional (RNN) . Semua RNN terdiri daripada satu siri modul rangkaian saraf berulang
Kekuatan:
Kelemahan:
Terlalu banyak parameter model akan membawa kepada masalah overfitting
2 Model analisis siri masa tradisional
Auto Regresi (AR)🜎🜎 Purata
Kelemahan:
Kaedah Purata Bergerak (MA): Kaedah ini berdasarkan purata data dan menganggap kestabilan tertentu antara nilai masa hadapan dan nilai masa lalu
Kekuatan :
Menangkap perhubungan purata bergerak dalam data siri masa. Model MA menggunakan gabungan linear istilah ralat hingar putih dari langkah masa lalu untuk meramalkan pemerhatian semasa dan oleh itu menangkap sifat purata bergerak dalam data.
Agak mudah dan intuitif. Parameter model MA mewakili berat terma ralat hingar putih pada langkah masa lalu, dan model boleh dipasang dengan menganggarkan pemberat ini.
Kelemahan:
Model Purata Pergerakan Autoregresif (model ARMA, Auto-Regression dan Moving AverageModel) ialah kaedah penting untuk mengkaji siri masa Ia terdiri daripada model autoregresif (model AR) dan model purata bergerak ). model) sebagai asas, ia mempunyai ciri-ciri julat aplikasi yang luas dan ralat ramalan kecil.
Model ARIMA ialah singkatan model Autoregressive Differential Moving Average, nama penuhnya ialah Autoregressive Integrated Moving Average Model. Model ini terutamanya terdiri daripada tiga bahagian, iaitu model autoregresif (AR), proses perbezaan (I) dan model purata bergerak (MA) Idea asas model ARIMA adalah menggunakan maklumat sejarah data itu sendiri untuk meramal masa depan. Nilai teg pada satu masa dipengaruhi oleh kedua-dua nilai teg dalam tempoh yang lalu dan peristiwa yang tidak disengajakan dalam tempoh yang lalu Dalam erti kata lain, model ARIMA mengandaikan bahawa nilai teg berubah-ubah mengikut arah aliran masa arah aliran dipengaruhi oleh label sejarah, turun naik dipengaruhi oleh peristiwa tidak sengaja dalam tempoh masa, dan arah aliran umum itu sendiri tidak semestinya stabil
Model ARIMA ialah kaedah analisis siri masa yang menganalisis data mengikut Model autokorelasi dan perbezaan kepada ekstrak corak siri masa yang tersembunyi dalam data, dan kemudian ramalkan data masa hadapan
Bahagian AR digunakan untuk memproses bahagian autoregresif siri masa, yang mengambil kira pemerhatian beberapa tempoh lalu Kesan nilai pada nilai semasa.
Kekuatan:
Pembinaan model adalah sangat mudah, hanya menggunakan pembolehubah endogen tanpa menggunakan pembolehubah eksogen yang lain. Apa yang dipanggil pembolehubah endogen merujuk kepada pembolehubah yang hanya bergantung pada data itu sendiri, tidak seperti model regresi yang memerlukan sokongan pembolehubah lainKelemahan:
Data siri masa diperlukan untuk menjadi stabil, atau menjadi stabil selepas pemprosesan pembezaanPada asasnya, ia hanya boleh menangkap hubungan linear, tetapi bukan hubungan bukan linear.
SARIMA ialah kaedah analisis siri masa yang biasa digunakan, yang merupakan lanjutan daripada model ARIMA pada data bermusim. Model SARIMA boleh digunakan untuk meramalkan data siri masa bermusim, seperti jualan tahunan atau lawatan tapak web mingguan. Berikut adalah kelebihan dan kekurangan model SARIMA:
Kekuatan:
Kelemahan:
Model purata bergerak bersepadu autoregresif bermusim (SARIMAX) adalah berdasarkan model autoregresif bergerak pembezaan (ARIMA) serta model Regressor eksogen. Ia sesuai untuk data siri masa dengan ciri-ciri berkala dan bermusim yang jelas
Kaedah jenis ini diwakili oleh lightgbm dan xgboost Secara amnya, masalah siri masa ditukar kepada pembelajaran diselia, dan melalui ciri kejuruteraan dan kaedah Pembelajaran mesin untuk meramalkan model ini boleh menyelesaikan model ramalan siri masa yang paling kompleks. Menyokong pemodelan data yang kompleks, regresi kolaboratif berbilang pembolehubah dan masalah tak linear.
Kepentingan kejuruteraan ciri adalah jelas dan ia memainkan peranan penting dalam kejayaan pembelajaran mesin. Walau bagaimanapun, kejuruteraan ciri bukanlah tugas yang mudah dan memerlukan pemprosesan manual yang kompleks dan kepakaran unik. Tahap kejuruteraan ciri selalunya menentukan had atas pembelajaran mesin, dan algoritma pembelajaran mesin adalah sehampir mungkin dengan had atas ini. Setelah kejuruteraan ciri selesai, kami boleh terus menggunakan algoritma model pokok - lightgbm dan xgboost. Kedua-dua model ini adalah kaedah pemodelan yang sangat biasa dan cekap. Di samping itu, mereka juga mempunyai ciri-ciri berikut:
Kaedah khusus untuk dipilih perlu dipertimbangkan secara menyeluruh berdasarkan sifat data, ciri-ciri masalah, dan pengalaman dan kebolehan anda sendiri.
Anda perlu memilih kaedah ramalan siri masa yang sesuai berdasarkan ciri data tertentu, keperluan masalah dan keupayaan anda sendiri. Kadangkala, menggabungkan pelbagai kaedah boleh meningkatkan ketepatan dan kestabilan ramalan. Pada masa yang sama, untuk memilih model dengan lebih baik dan menilai keputusan ramalan, adalah penting juga untuk melakukan analisis visual data dan diagnosis model.
Atas ialah kandungan terperinci Algoritma yang biasa digunakan dalam analisis masa semuanya ada di sini. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!