Rumah >Peranti teknologi >AI >11 pengedaran asas yang saintis data menggunakan 95% masa

11 pengedaran asas yang saintis data menggunakan 95% masa

王林
王林ke hadapan
2023-12-15 08:21:251174semak imbas

Mengikuti inventori terakhir "11 carta asas yang digunakan oleh saintis data 95% pada masanya", hari ini kami akan membawakan kepada anda 11 pengedaran asas yang digunakan oleh saintis data 95% pada masa itu. Menguasai pengedaran ini membantu kami memahami sifat data dengan lebih mendalam dan membuat inferens dan ramalan yang lebih tepat semasa analisis data dan membuat keputusan.

11 pengedaran asas yang saintis data menggunakan 95% masa

1. Taburan Normal

Taburan Normal, juga dikenali sebagai Taburan Gaussian, ialah taburan kebarangkalian berterusan. Ia mempunyai lengkung berbentuk loceng simetri dengan min (μ) sebagai pusat dan sisihan piawai (σ) sebagai lebar. Taburan normal mempunyai nilai aplikasi penting dalam banyak bidang seperti statistik, teori kebarangkalian, dan kejuruteraan.

11 pengedaran asas yang saintis data menggunakan 95% masa

Fungsi ketumpatan kebarangkalian taburan normal boleh dinyatakan sebagai:

11 pengedaran asas yang saintis data menggunakan 95% masa

Fungsi ketumpatan kebarangkalian mewakili ketumpatan kebarangkalian nilai-nilai pembolehubah rawak teragih normal dalam selang unit berhampiran nilai yang diberikan x. Antaranya, μ mewakili min dan σ mewakili sisihan piawai Taburan normal digunakan secara meluas dalam amalan. Sebagai contoh, taburan ketinggian dan berat manusia menghampiri taburan normal. Tambahan pula, markah ujian selalunya diedarkan secara normal, dengan lebih sedikit orang yang mendapat markah tinggi dan rendah dan lebih ramai orang mendapat markah di tengah. Model pengedaran ini mempunyai nilai aplikasi yang penting dalam banyak bidang

2 Taburan Bernoulli

Taburan Bernoulli (Taburan Bernoulli) ialah taburan kebarangkalian diskret yang digunakan untuk menerangkan satu peristiwa dengan hanya dua kemungkinan hasil percubaan. Percubaan Bernoulli boleh menjadi kepala atau ekor, kejayaan atau kegagalan, ya atau tidak, dsb. Contohnya, membelek syiling, menguji sama ada produk itu layak, sama ada seseorang membeli produk tertentu, dsb.

11 pengedaran asas yang saintis data menggunakan 95% masaFungsi jisim kebarangkalian bagi taburan Bernoulli ialah:

11 pengedaran asas yang saintis data menggunakan 95% masaDalam taburan Bernoulli, p mewakili kebarangkalian kejayaan, dan nilainya berjulat dari 0 hingga 1. Apabila p bersamaan 0.5, taburan Bernoulli menghampiri taburan seragam

Aplikasi taburan Bernoulli dalam amalan: Contohnya, taburan binomial ialah n eksperimen berulang bebas bagi taburan Bernoulli.

3. Taburan binomial

Taburan binomial (Taburan Binomial) ialah taburan kebarangkalian diskret yang digunakan untuk menerangkan taburan kebarangkalian bilangan kejayaan dalam n eksperimen berulang bebas. Setiap percubaan hanya mempunyai dua kemungkinan hasil: kejayaan (dirakam sebagai 1) atau kegagalan (dirakam sebagai 0). Kebarangkalian kejayaan ialah p dan kebarangkalian kegagalan ialah 1-p.

11 pengedaran asas yang saintis data menggunakan 95% masaFungsi jisim kebarangkalian taburan binomial boleh dinyatakan sebagai:

11 pengedaran asas yang saintis data menggunakan 95% masadi mana, P(X=k) mewakili kebarangkalian k masa kejayaan,

ialah bilangan gabungan, menunjukkan pemilihan k daripada n percubaan Bilangan kombinasi yang berjaya. p ialah kebarangkalian kejayaan, antara 0 hingga 1. n ialah bilangan percubaan.

11 pengedaran asas yang saintis data menggunakan 95% masaPengagihan binomial digunakan secara meluas dalam amalan. Sebagai contoh, dalam penyelidikan perubatan, kita boleh menggunakan taburan binomial untuk mengira kadar kejayaan pesakit yang menerima rawatan tertentu. Dalam bidang kejuruteraan, kita boleh menggunakan taburan binomial untuk menilai kadar kelayakan sesuatu produk semasa proses pengeluaran. Ini adalah contoh penting taburan binomial dalam aplikasi praktikal

4. Taburan Poisson

Taburan Poisson (Taburan Poisson) ialah taburan kebarangkalian diskret yang digunakan untuk menerangkan bilangan peristiwa yang berlaku dalam tempoh masa yang tetap. Taburan Poisson sesuai untuk situasi di mana peristiwa adalah bebas dan berlaku pada kadar purata yang tetap.

11 pengedaran asas yang saintis data menggunakan 95% masaFungsi ketumpatan kebarangkalian bagi taburan Poisson ialah:

Di sini, P(X=k) mewakili kebarangkalian peristiwa berlaku k kali dalam tempoh masa yang tetap, dan λ mewakili kadar purata kejadian sesuatu peristiwa, iaitu purata bilangan peristiwa berlaku setiap unit masa. e ialah pemalar semula jadi, lebih kurang sama dengan 2.718. k mewakili bilangan peristiwa yang berlaku pengedaran Poisson digunakan secara meluas dalam amalan Sebagai contoh, dalam pusat panggilan, bilangan panggilan seminit boleh dianggap sebagai pengedaran Poisson, di mana purata bilangan panggilan seminit ialah λ

.

5. Taburan eksponen

Taburan Eksponen (Taburan Eksponen) ialah taburan kebarangkalian berterusan yang digunakan untuk menerangkan kebarangkalian sesuatu peristiwa berlaku dalam masa yang ditetapkan. Taburan eksponen sesuai untuk situasi di mana peristiwa adalah bebas antara satu sama lain dan berlaku pada kadar purata yang tetap.

11 pengedaran asas yang saintis data menggunakan 95% masaFungsi ketumpatan kebarangkalian taburan eksponen ialah:

11 pengedaran asas yang saintis data menggunakan 95% masaKetumpatan kebarangkalian sesuatu kejadian yang berlaku dalam masa tertentu x diwakili oleh f(x,λ). λ mewakili purata kadar kejadian kejadian, iaitu purata bilangan kejadian yang berlaku setiap unit masa. e ialah pemalar semula jadi, lebih kurang sama dengan 2.718

Taburan eksponen mempunyai banyak aplikasi dalam kehidupan sebenar. Contohnya, dalam pereputan radioaktif, masa pereputan nukleus radioaktif boleh dilihat sebagai taburan eksponen. Ini bermakna taburan kebarangkalian masa pereputan mengikut fungsi eksponen. Purata masa pereputan sepadan dengan parameter λ bagi fungsi eksponen

6 Taburan gamma

Taburan gamma ialah taburan kebarangkalian berterusan yang digunakan untuk menerangkan kebarangkalian sesuatu peristiwa berlaku dalam masa tertentu. Ia terpakai kepada situasi di mana peristiwa adalah bebas antara satu sama lain dan kadar kejadian purata sentiasa malar Fungsi ketumpatan kebarangkalian taburan gamma ialah:

11 pengedaran asas yang saintis data menggunakan 95% masa di mana f(x) mewakili masa x pada masa tertentu. ketumpatan kebarangkalian peristiwa dalaman. α dan β ialah parameter bentuk dan parameter kadar taburan gamma. α digunakan untuk menentukan bentuk taburan gamma, dan nilainya berjulat dari 0 hingga infiniti positif. β mewakili purata kadar kejadian kejadian, iaitu purata bilangan peristiwa yang berlaku setiap unit masa, dan julat nilai adalah dari 0 hingga infiniti positif. e ialah pemalar semula jadi, lebih kurang sama dengan 2.718 Aplikasi praktikal taburan gamma: Contohnya, pereputan radioaktif: Dalam pereputan radioaktif, masa untuk nukleus radioaktif untuk mereput boleh dianggap sebagai taburan gamma, dan masa pereputan purata ialah β/. α.

7. Taburan beta

Taburan beta ialah taburan kebarangkalian berterusan yang digunakan untuk menerangkan taburan kebarangkalian bilangan kejayaan dalam satu set nilai. Ia mempunyai dua parameter, mewakili nilai jangkaan (min) dan sisihan piawai (sisihan piawai) kebarangkalian kejayaan. 11 pengedaran asas yang saintis data menggunakan 95% masa

Fungsi ketumpatan kebarangkalian taburan beta adalah seperti berikut:

Dalam hal ini, x mewakili bilangan kejayaan, α dan β mewakili parameter bentuk taburan masing-masing

11 pengedaran asas yang saintis data menggunakan 95% masaTaburan beta mempunyai aplikasi dalam banyak masalah praktikal. Sebagai contoh, dalam penyuntingan gen, penyelidik mungkin menggunakan pengedaran beta untuk meramalkan kebarangkalian bahawa teknologi penyuntingan gen akan berjaya mengedit tapak sasaran tertentu. Dalam bidang kewangan, pengedaran beta boleh digunakan untuk menerangkan turun naik harga aset, atau untuk mengira pulangan jangkaan portfolio pelaburan

8 Pengagihan seragam

Pengagihan seragam ialah pengagihan kebarangkalian yang digunakan untuk menggambarkan set nilai dalam tertentu Teragih sama rata dalam selang waktu. Terdapat dua jenis taburan seragam: taburan seragam diskret dan taburan seragam berterusan. 11 pengedaran asas yang saintis data menggunakan 95% masa

Taburan seragam diskret: Apabila pembolehubah rawak diskret Ia mematuhi taburan seragam diskret. Taburan seragam berterusan: Apabila fungsi ketumpatan kebarangkalian pembolehubah rawak berterusan X ialah f(x) = 1/(b-a), kita katakan bahawa Ciri taburan seragam ialah dalam selang waktu tertentu, setiap nilai mempunyai peluang yang sama untuk berlaku. Sebagai contoh, jika anda melambung syiling saksama, kebarangkalian kepala dan ekor ialah 1/2, yang merupakan taburan seragam.

9. Taburan log-normal

Taburan log-normal (Taburan log-normal) ialah taburan kebarangkalian berterusan, yang dicirikan oleh logaritma pembolehubah rawak yang mematuhi taburan normal. Dalam erti kata lain, jika logaritma ln(X) pembolehubah rawak X mematuhi taburan normal, maka pembolehubah rawak X mematuhi taburan lognormal.

11 pengedaran asas yang saintis data menggunakan 95% masa

Fungsi ketumpatan kebarangkalian bagi taburan lognormal boleh dinyatakan sebagai:

11 pengedaran asas yang saintis data menggunakan 95% masa

di mana μ ialah min bagi taburan lognormal dan σ ialah sisihan piawai bagi taburan lognormal.

Taburan lognormal sangat penting dalam banyak aplikasi praktikal, seperti kewangan (harga saham, hasil, dll.), biologi (kadar pertumbuhan, dll.), ekonomi (perbelanjaan pengguna, dll.), dll.

10. Taburan T Taburan

T ialah taburan kebarangkalian berterusan, terutamanya digunakan untuk menerangkan taburan min dalam kes sampel kecil. Taburan t adalah serupa dengan taburan normal, tetapi ekornya boleh memanjang ke kiri dan kanan, bergantung pada tahap kebebasan (k). Taburan-t digunakan secara meluas dalam inferens statistik, seperti dalam ujian hipotesis untuk menilai perbezaan ketara antara min sampel dan min populasi.

11 pengedaran asas yang saintis data menggunakan 95% masa

Jangkaan dan varians taburan t adalah seperti berikut:

E(t)=0

Kandungan yang akan ditulis semula ialah: Var(t)=k/(k-1)

darjah kebebasan taburan t ( k) mewakili hubungan antara saiz sampel (n) dan sisihan piawai populasi. Apabila k > 30, taburan t adalah hampir dengan taburan normal; apabila k hampir kepada 1, taburan t menjadi taburan Cauchy (Taburan Cauchy)

Dalam aplikasi praktikal, apabila saiz sampel besar (n>30) , ia boleh Gunakan taburan normal untuk melakukan ujian hipotesis Dalam kes ini, anda boleh menggunakan statistik z untuk mewujudkan selang keyakinan. Walau bagaimanapun, apabila saiz sampel adalah kecil (n

11. Taburan Weibull

Taburan Weibull (Taburan Weibull) ialah taburan kebarangkalian berterusan.

Fungsi ketumpatan kebarangkalian taburan Weibull ialah:

11 pengedaran asas yang saintis data menggunakan 95% masa

Dalam taburan Weibull, x dianggap sebagai pembolehubah rawak, λ dipanggil parameter skala (skala), dan k ialah parameter bentuk (bentuk). Setakat taburan Weber berkenaan, apabila k sama dengan 1, ia adalah taburan eksponen. Jika λ bersamaan dengan 1, ini ialah taburan Weber yang diminimumkan

Atas ialah kandungan terperinci 11 pengedaran asas yang saintis data menggunakan 95% masa. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Artikel ini dikembalikan pada:51cto.com. Jika ada pelanggaran, sila hubungi admin@php.cn Padam