在5.1.46中优化器在对primary key的选择上做了一点改动:
Performance: While looking for the shortest index for a covering index scan, the optimizer did not consider the full row length for a clustered primary key, as in InnoDB. Secondary covering indexes will now be preferred, making full table scans less likely。
该版本中增加了find_shortest_key函数,该函数的作用可以认为是选择最小key length的
索引来满足我们的查询。
该函数是怎么工作的:
代码如下:
What find_shortest_key should do is the following. If the primary key is a covering index
and is clustered, like in MyISAM, then the behavior today should remain the same. If the
primary key is clustered, like in InnoDB, then it should not consider using the primary
key because then the storage engine will have to scan through much more data.
调用Primary_key_is_clustered(),当返回值为true,执行find_shortest_key:选择key length最小的覆盖索引(Secondary covering indexes),然后来满足查询。
首先在5.1.45中测试:
$mysql -V mysql Ver 14.14 Distrib 5.1.45, for unknown-linux-gnu (x86_64) using EditLine wrapper root@test 03:49:45>create table test(id int,name varchar(20),name2 varchar(20),d datetime,primary key(id)) engine=innodb; Query OK, 0 rows affected (0.16 sec) root@test 03:49:47>insert into test values(1,'xc','sds',now()),(2,'xcx','dd',now()),(3,'sdds','ddd',now()),(4,'sdsdf','dsd',now()),(5,'sdsdaa','sds',now()); Query OK, 5 rows affected (0.00 sec) Records: 5 Duplicates: 0 Warnings: 0 root@test 03:49:51> root@test 03:49:51>insert into test values(6,'xce','sdsd',now()),(7,'xcx','sdsd',now()),(8,'sdds','sds',now()),(9,'sdsdsdf','sdsdsd',now()),(10,'sdssdfdaa','sdsdsd',now()); Query OK, 5 rows affected (0.00 sec) Records: 5 Duplicates: 0 Warnings: 0
创建索引ind_1:
root@test 03:49:53>alter table test add index ind_1(name,d); Query OK, 0 rows affected (0.09 sec) Records: 0 Duplicates: 0 Warnings: 0 root@test 03:50:08>explain select count(*) from test; +—-+————-+——-+——-+—————+———+———+——+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——-+—————+———+———+——+——+————-+ | 1 | SIMPLE | test | index | NULL | PRIMARY | 4 | NULL | 10 | Using index | +—-+————-+——-+——-+—————+———+———+——+——+————-+ 1 row in set (0.00 sec)
添加ind_2:
root@test 08:04:35>alter table test add index ind_2(d); Query OK, 0 rows affected (0.07 sec) Records: 0 Duplicates: 0 Warnings: 0 root@test 08:04:45>explain select count(*) from test; +—-+————-+——-+——-+—————+———+———+——+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——-+—————+———+———+——+——+————-+ | 1 | SIMPLE | test | index | NULL | PRIMARY | 4 | NULL | 10 | Using index | +—-+————-+——-+——-+—————+———+———+——+——+————-+ 1 row in set (0.00 sec)
上面的版本【5.1.45】中,可以看到优化器选择使用主键来完成扫描,并没有使用ind_1,ind_2来完成查询;
接下来是:5.1.48
$mysql -V mysql Ver 14.14 Distrib 5.1.48, for unknown-linux-gnu (x86_64) using EditLine wrapper root@test 03:13:15> create table test(id int,name varchar(20),name2 varchar(20),d datetime,primary key(id)) engine=innodb; Query OK, 0 rows affected (0.00 sec) root@test 03:48:04>insert into test values(1,'xc','sds',now()),(2,'xcx','dd',now()),(3,'sdds','ddd',now()),(4,'sdsdf','dsd',now()),(5,'sdsdaa','sds',now()); Query OK, 5 rows affected (0.00 sec) Records: 5 Duplicates: 0 Warnings: 0 root@test 03:48:05>insert into test values(6,'xce','sdsd',now()),(7,'xcx','sdsd',now()),(8,'sdds','sds',now()),(9,'sdsdsdf','sdsdsd',now()),(10,'sdssdfdaa','sdsdsd',now()); Query OK, 5 rows affected (0.01 sec) Records: 5 Duplicates: 0 Warnings: 0
创建索引ind_1:
root@test 03:13:57>alter table test add index ind_1(name,d); Query OK, 0 rows affected (0.01 sec) Records: 0 Duplicates: 0 Warnings: 0 root@test 03:15:55>explain select count(*) from test; +—-+————-+——-+——-+—————+——-+———+——+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——-+—————+——-+———+——+——+————-+ | 1 | SIMPLE | test | index | NULL | ind_1 | 52 | NULL | 10 | Using index | +—-+————-+——-+——-+—————+——-+———+——+——+————-+ root@test 08:01:56>alter table test add index ind_2(d); Query OK, 0 rows affected (0.03 sec) Records: 0 Duplicates: 0 Warnings: 0 添加ind_2: root@test 08:02:09>explain select count(*) from test; +—-+————-+——-+——-+—————+——-+———+——+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——-+—————+——-+———+——+——+————-+ | 1 | SIMPLE | test | index | NULL | ind_2 | 9 | NULL | 10 | Using index | +—-+————-+——-+——-+—————+——-+———+——+——+————-+ 1 row in set (0.00 sec)
版本【5.1.48】中首先明智的选择ind_1来完成扫描,并没有考虑到使用主键(全索引扫描)来完成查询,随后添加ind_2,由于 ind_1的key长度是大于ind_2 key长度,所以mysql选择更优的ind_2来完成查询,可以看到mysql在选择方式上也在慢慢智能了。
观察性能:
5.1.48 root@test 08:49:32>set profiling =1; Query OK, 0 rows affected (0.00 sec) root@test 08:49:41>select count(*) from test; +———-+ | count(*) | +———-+ | 5242880 | +———-+ 1 row in set (1.18 sec) root@test 08:56:30>show profile cpu,block io for query 1; +——————————–+———-+———-+————+————–+—————+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +——————————–+———-+———-+————+————–+—————+ | starting | 0.000035 | 0.000000 | 0.000000 | 0 | 0 | | checking query cache for query | 0.000051 | 0.000000 | 0.000000 | 0 | 0 | | Opening tables | 0.000014 | 0.000000 | 0.000000 | 0 | 0 | | System lock | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | Table lock | 0.000010 | 0.000000 | 0.000000 | 0 | 0 | | init | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000012 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 1.178452 | 1.177821 | 0.000000 | 0 | 0 | | end | 0.000016 | 0.000000 | 0.000000 | 0 | 0 | | query end | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | freeing items | 0.000040 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000086 | 0.000000 | 0.000000 | 0 | 0 | | cleaning up | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | +——————————–+———-+———-+————+————–+—————+
对比性能:
5.1.45 root@test 08:57:18>set profiling =1; Query OK, 0 rows affected (0.00 sec) root@test 08:57:21>select count(*) from test; +———-+ | count(*) | +———-+ | 5242880 | +———-+ 1 row in set (1.30 sec) root@test 08:57:27>show profile cpu,block io for query 1; +——————————–+———-+———-+————+————–+—————+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +——————————–+———-+———-+————+————–+—————+ | starting | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | | checking query cache for query | 0.000041 | 0.000000 | 0.000000 | 0 | 0 | | Opening tables | 0.000014 | 0.000000 | 0.000000 | 0 | 0 | | System lock | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | Table lock | 0.000008 | 0.000000 | 0.000000 | 0 | 0 | | init | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000014 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000012 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 1.294178 | 1.293803 | 0.000000 | 0 | 0 | | end | 0.000016 | 0.000000 | 0.000000 | 0 | 0 | | query end | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | freeing items | 0.000040 | 0.000000 | 0.001000 | 0 | 0 | | logging slow query | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000080 | 0.000000 | 0.000000 | 0 | 0 | | cleaning up | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | +——————————–+———-+———-+————+————–+—————+
从上面的profile中可以看到在Sending data上,差异还是比较明显的,mysql不需要扫描整个表的页块,而是扫描表中索引key最短的索引页块来完成查询,这样就减少了很多不必要的数据。
PS:innodb是事务引擎,所以在叶子节点中除了存储本行记录外,还会多记录一些关于事务的信息(DB_TRX_ID ,DB_ROLL_PTR 等),因此单行长度额外开销20个字节左右,最直观的方法是将myisam转为innodb,存储空间会明显上升。那么在主表为t(id,name,pk(id)),二级索引ind_name(name,id),这个时候很容易混淆,即使只有两个字段,第一索引还是比第二索引要大(可以通过innodb_table_monitor观察表的的内部结构)在查询所有id的时候,优化器还是会选择第二索引ind_name。

Cardinality Indeks MySQL mempunyai kesan yang signifikan terhadap prestasi pertanyaan: 1. Indeks kardinaliti yang tinggi dapat lebih berkesan menyempitkan julat data dan meningkatkan kecekapan pertanyaan; 2. Indeks kardinaliti yang rendah boleh membawa kepada pengimbasan jadual penuh dan mengurangkan prestasi pertanyaan; 3. Dalam indeks bersama, urutan kardinaliti yang tinggi harus diletakkan di depan untuk mengoptimumkan pertanyaan.

Laluan pembelajaran MySQL termasuk pengetahuan asas, konsep teras, contoh penggunaan, dan teknik pengoptimuman. 1) Memahami konsep asas seperti jadual, baris, lajur, dan pertanyaan SQL. 2) Ketahui definisi, prinsip kerja dan kelebihan MySQL. 3) menguasai operasi CRUD asas dan penggunaan lanjutan, seperti indeks dan prosedur yang disimpan. 4) Biasa dengan debugging kesilapan biasa dan cadangan pengoptimuman prestasi, seperti penggunaan rasional indeks dan pertanyaan pengoptimuman. Melalui langkah -langkah ini, anda akan memahami sepenuhnya penggunaan dan pengoptimuman MySQL.

Aplikasi dunia nyata MySQL termasuk reka bentuk pangkalan data asas dan pengoptimuman pertanyaan kompleks. 1) Penggunaan Asas: Digunakan untuk menyimpan dan mengurus data pengguna, seperti memasukkan, menanyakan, mengemas kini dan memadam maklumat pengguna. 2) Penggunaan lanjutan: Mengendalikan logik perniagaan yang kompleks, seperti perintah dan pengurusan inventori platform e-dagang. 3) Pengoptimuman Prestasi: Meningkatkan prestasi dengan menggunakan indeks, jadual partisi dan cache pertanyaan.

Perintah SQL di MySQL boleh dibahagikan kepada kategori seperti DDL, DML, DQL, dan DCL, dan digunakan untuk membuat, mengubah suai, memadam pangkalan data dan jadual, memasukkan, mengemas kini, memadam data, dan melakukan operasi pertanyaan yang kompleks. 1. Penggunaan asas termasuk jadual penciptaan createtable, memasukkan data memasukkan, dan pilih data pertanyaan. 2. Penggunaan lanjutan melibatkan gabungan untuk Jadual Bergabung, Subqueries dan Groupby untuk Agregasi Data. 3. Kesilapan umum seperti kesilapan sintaks, jenis data yang tidak sepadan dan masalah kebenaran boleh disahpepijat melalui pemeriksaan sintaks, penukaran jenis data dan pengurusan kebenaran. 4. Cadangan Pengoptimuman Prestasi termasuk menggunakan indeks, mengelakkan pengimbasan jadual penuh, mengoptimumkan operasi gabungan dan menggunakan transaksi untuk memastikan konsistensi data.

InnoDB mencapai atomik melalui undolog, konsistensi dan pengasingan melalui mekanisme penguncian dan MVCC, dan kegigihan melalui redolog. 1) Atomicity: Gunakan Undolog untuk merekodkan data asal untuk memastikan urus niaga dapat dilancarkan kembali. 2) Konsistensi: Memastikan konsistensi data melalui penguncian peringkat baris dan MVCC. 3) Pengasingan: Menyokong pelbagai tahap pengasingan, dan RepeatableRead digunakan secara lalai. 4) Kegigihan: Gunakan redolog untuk merekodkan pengubahsuaian untuk memastikan data disimpan untuk masa yang lama.

Kedudukan MySQL dalam pangkalan data dan pengaturcaraan sangat penting. Ia adalah sistem pengurusan pangkalan data sumber terbuka yang digunakan secara meluas dalam pelbagai senario aplikasi. 1) MySQL menyediakan fungsi penyimpanan data, organisasi dan pengambilan data yang cekap, sistem sokongan web, mudah alih dan perusahaan. 2) Ia menggunakan seni bina pelanggan-pelayan, menyokong pelbagai enjin penyimpanan dan pengoptimuman indeks. 3) Penggunaan asas termasuk membuat jadual dan memasukkan data, dan penggunaan lanjutan melibatkan pelbagai meja dan pertanyaan kompleks. 4) Soalan -soalan yang sering ditanya seperti kesilapan sintaks SQL dan isu -isu prestasi boleh disahpepijat melalui arahan jelas dan log pertanyaan perlahan. 5) Kaedah pengoptimuman prestasi termasuk penggunaan indeks rasional, pertanyaan yang dioptimumkan dan penggunaan cache. Amalan terbaik termasuk menggunakan urus niaga dan preparedStatemen

MySQL sesuai untuk perusahaan kecil dan besar. 1) Perniagaan kecil boleh menggunakan MySQL untuk pengurusan data asas, seperti menyimpan maklumat pelanggan. 2) Perusahaan besar boleh menggunakan MySQL untuk memproses data besar dan logik perniagaan yang kompleks untuk mengoptimumkan prestasi pertanyaan dan pemprosesan transaksi.

InnoDB secara berkesan menghalang pembacaan hantu melalui mekanisme utama. 1) Kekunci seterusnya menggabungkan kunci baris dan kunci jurang untuk mengunci rekod dan jurang mereka untuk mengelakkan rekod baru daripada dimasukkan. 2) Dalam aplikasi praktikal, dengan mengoptimumkan pertanyaan dan menyesuaikan tahap pengasingan, persaingan kunci dapat dikurangkan dan prestasi konkurensi dapat ditingkatkan.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Dreamweaver CS6
Alat pembangunan web visual

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.