Rumah > Artikel > Peranti teknologi > Isu kebolehskalaan dengan model pembelajaran mesin
Isu kebolehskalaan model pembelajaran mesin memerlukan contoh kod khusus
Abstrak:
Apabila saiz data terus meningkat Dengan kerumitan berterusan keperluan perniagaan, model pembelajaran mesin tradisional selalunya tidak dapat memenuhi keperluan pemprosesan data berskala besar dan tindak balas pantas. Oleh itu, cara untuk meningkatkan kebolehskalaan model pembelajaran mesin telah menjadi hala tuju penyelidikan yang penting. Artikel ini akan memperkenalkan isu kebolehskalaan model pembelajaran mesin dan memberikan contoh kod khusus.
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # 定义一个分布式的数据集 strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() # 创建模型 model = keras.Sequential([ layers.Dense(64, activation='relu'), layers.Dense(64, activation='relu'), layers.Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # 使用分布式计算进行训练 with strategy.scope(): model.fit(train_dataset, epochs=10, validation_data=val_dataset)
Contoh kod di atas menggunakan rangka kerja pengkomputeran teragih TensorFlow untuk melatih model. Dengan mengedarkan data latihan kepada berbilang nod pengkomputeran untuk pengiraan, kelajuan latihan boleh dipertingkatkan dengan ketara.
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # 创建模型 model = keras.Sequential([ layers.Dense(64, activation='relu'), layers.Dense(64, activation='relu'), layers.Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # 训练模型 model.fit(train_dataset, epochs=10, validation_data=val_dataset) # 剪枝模型 pruned_model = tfmot.sparsity.keras.prune_low_magnitude(model) # 推理模型 pruned_model.predict(test_dataset)
Contoh kod di atas menggunakan kaedah pemangkasan TensorFlow Model Optimization Toolkit untuk mengurangkan bilangan parameter dan jumlah pengiraan model. Inferens melalui model pemangkasan boleh meningkatkan kelajuan tindak balas model dengan banyak.
Kesimpulan:
Artikel ini memperkenalkan isu kebolehskalaan model pembelajaran mesin melalui contoh kod tertentu dan memberikan contoh kod daripada dua aspek: pengkomputeran teragih dan pemampatan model. Meningkatkan skalabiliti model pembelajaran mesin adalah sangat penting untuk menangani data berskala besar dan senario konkurensi tinggi Saya harap kandungan artikel ini akan membantu pembaca.
Atas ialah kandungan terperinci Isu kebolehskalaan dengan model pembelajaran mesin. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!