Isu pemilihan algoritma dalam pembelajaran pengukuhan
Masalah pemilihan algoritma dalam pembelajaran pengukuhan memerlukan contoh kod khusus
Pembelajaran peneguhan ialah satu bidang pembelajaran mesin yang mempelajari strategi optimum melalui interaksi antara ejen dan persekitaran. Dalam pembelajaran pengukuhan, memilih algoritma yang sesuai adalah penting untuk kesan pembelajaran. Dalam artikel ini, kami meneroka isu pemilihan algoritma dalam pembelajaran pengukuhan dan menyediakan contoh kod konkrit.
Terdapat banyak algoritma untuk dipilih dalam pembelajaran pengukuhan, seperti Q-Learning, Deep Q Network (DQN), Actor-Critic, dll. Memilih algoritma yang sesuai bergantung pada faktor seperti kerumitan masalah, saiz ruang keadaan dan ruang tindakan, dan ketersediaan sumber pengkomputeran.
Pertama, mari kita lihat masalah pembelajaran pengukuhan yang mudah, masalah maze. Dalam masalah ini, ejen perlu mencari laluan terpendek dari titik permulaan ke titik akhir. Kita boleh menggunakan algoritma Q-Learning untuk menyelesaikan masalah ini. Berikut ialah contoh kod:
import numpy as np # 创建迷宫 maze = np.array([ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 1, 0, 0, 0, 1, 0, 1], [1, 0, 0, 1, 0, 0, 0, 1, 0, 1], [1, 0, 0, 0, 0, 1, 1, 0, 0, 1], [1, 0, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0, 0, 0, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ]) # 定义Q表格 Q = np.zeros((maze.shape[0], maze.shape[1], 4)) # 设置超参数 epochs = 5000 epsilon = 0.9 alpha = 0.1 gamma = 0.6 # Q-Learning算法 for episode in range(epochs): state = (1, 1) # 设置起点 while state != (6, 8): # 终点 x, y = state possible_actions = np.where(maze[x, y] == 0)[0] # 可能的动作 action = np.random.choice(possible_actions) # 选择动作 next_state = None if action == 0: next_state = (x - 1, y) elif action == 1: next_state = (x + 1, y) elif action == 2: next_state = (x, y - 1) elif action == 3: next_state = (x, y + 1) reward = -1 if next_state == (6, 8) else 0 # 终点奖励为0,其他状态奖励为-1 Q[x, y, action] = (1 - alpha) * Q[x, y, action] + alpha * (reward + gamma * np.max(Q[next_state])) state = next_state print(Q)
Algoritma Q-Learning dalam kod di atas mempelajari strategi optimum dengan mengemas kini jadual Q. Dimensi jadual Q sepadan dengan dimensi maze, di mana setiap elemen mewakili faedah ejen yang melakukan tindakan berbeza dalam keadaan tertentu.
Selain Q-Learning, algoritma lain juga boleh digunakan untuk menyelesaikan masalah pembelajaran pengukuhan yang lebih kompleks. Sebagai contoh, apabila ruang keadaan dan ruang tindakan masalah adalah besar, algoritma pembelajaran tetulang mendalam seperti DQN boleh digunakan. Berikut ialah kod contoh DQN yang mudah:
import torch import torch.nn as nn import torch.optim as optim import random # 创建神经网络 class DQN(nn.Module): def __init__(self, input_size, output_size): super(DQN, self).__init__() self.fc1 = nn.Linear(input_size, 16) self.fc2 = nn.Linear(16, output_size) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 定义超参数 input_size = 4 output_size = 2 epochs = 1000 batch_size = 128 gamma = 0.99 epsilon = 0.2 # 创建经验回放内存 memory = [] capacity = 10000 # 创建神经网络和优化器 model = DQN(input_size, output_size) optimizer = optim.Adam(model.parameters(), lr=0.001) # 定义经验回放函数 def append_memory(state, action, next_state, reward): memory.append((state, action, next_state, reward)) if len(memory) > capacity: del memory[0] # 定义训练函数 def train(): if len(memory) < batch_size: return batch = random.sample(memory, batch_size) state_batch, action_batch, next_state_batch, reward_batch = zip(*batch) state_batch = torch.tensor(state_batch, dtype=torch.float) action_batch = torch.tensor(action_batch, dtype=torch.long) next_state_batch = torch.tensor(next_state_batch, dtype=torch.float) reward_batch = torch.tensor(reward_batch, dtype=torch.float) current_q = model(state_batch).gather(1, action_batch.unsqueeze(1)) next_q = model(next_state_batch).max(1)[0].detach() target_q = reward_batch + gamma * next_q loss = nn.MSELoss()(current_q, target_q.unsqueeze(1)) optimizer.zero_grad() loss.backward() optimizer.step() # DQN算法 for episode in range(epochs): state = env.reset() total_reward = 0 while True: if random.random() < epsilon: action = env.action_space.sample() else: action = model(torch.tensor(state, dtype=torch.float)).argmax().item() next_state, reward, done, _ = env.step(action) append_memory(state, action, next_state, reward) train() state = next_state total_reward += reward if done: break if episode % 100 == 0: print("Episode: ", episode, " Total Reward: ", total_reward) print("Training finished.")
Algoritma DQN dalam kod di atas menggunakan rangkaian saraf untuk menganggarkan fungsi Q dan melatih rangkaian dengan berinteraksi dalam persekitaran untuk mempelajari dasar yang optimum.
Melalui contoh kod di atas, kita dapat melihat bahawa dalam pembelajaran pengukuhan, algoritma yang berbeza boleh dipilih untuk menyelesaikan masalah mengikut ciri-ciri masalah. Q-Learning sesuai untuk masalah di mana ruang keadaan kecil dan ruang tindakan kecil, manakala DQN sesuai untuk masalah kompleks di mana ruang keadaan dan ruang tindakan adalah besar.
Namun, dalam aplikasi praktikal, memilih algoritma bukanlah satu tugas yang mudah. Bergantung pada ciri-ciri masalah, kita boleh mencuba algoritma yang berbeza dan memilih algoritma yang paling sesuai berdasarkan keputusan. Apabila memilih algoritma, anda juga perlu memberi perhatian kepada faktor seperti penumpuan, kestabilan dan kerumitan pengiraan algoritma, dan membuat pertukaran berdasarkan keperluan khusus.
Ringkasnya, dalam pembelajaran pengukuhan, pemilihan algoritma adalah bahagian penting. Dengan memilih algoritma secara rasional dan menala serta menambah baiknya mengikut masalah tertentu, kami boleh mencapai hasil pembelajaran pengukuhan yang lebih baik dalam aplikasi praktikal.
Atas ialah kandungan terperinci Isu pemilihan algoritma dalam pembelajaran pengukuhan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Memanfaatkan kuasa AI di peranti: Membina CLI Chatbot Peribadi Pada masa lalu, konsep pembantu AI peribadi kelihatan seperti fiksyen sains. Bayangkan Alex, seorang peminat teknologi, bermimpi seorang sahabat AI yang pintar, yang tidak bergantung

Pelancaran AI4MH mereka berlaku pada 15 April, 2025, dan Luminary Dr. Tom Insel, M.D., pakar psikiatri yang terkenal dan pakar neurosains, berkhidmat sebagai penceramah kick-off. Dr. Insel terkenal dengan kerja cemerlangnya dalam penyelidikan kesihatan mental dan techno

"Kami mahu memastikan bahawa WNBA kekal sebagai ruang di mana semua orang, pemain, peminat dan rakan kongsi korporat, berasa selamat, dihargai dan diberi kuasa," kata Engelbert, menangani apa yang telah menjadi salah satu cabaran sukan wanita yang paling merosakkan. Anno

Pengenalan Python cemerlang sebagai bahasa pengaturcaraan, terutamanya dalam sains data dan AI generatif. Manipulasi data yang cekap (penyimpanan, pengurusan, dan akses) adalah penting apabila berurusan dengan dataset yang besar. Kami pernah meliputi nombor dan st

Sebelum menyelam, kaveat penting: Prestasi AI adalah spesifik yang tidak ditentukan dan sangat digunakan. Dalam istilah yang lebih mudah, perbatuan anda mungkin berbeza -beza. Jangan ambil artikel ini (atau lain -lain) sebagai perkataan akhir -sebaliknya, uji model ini pada senario anda sendiri

Membina portfolio AI/ML yang menonjol: Panduan untuk Pemula dan Profesional Mewujudkan portfolio yang menarik adalah penting untuk mendapatkan peranan dalam kecerdasan buatan (AI) dan pembelajaran mesin (ML). Panduan ini memberi nasihat untuk membina portfolio

Hasilnya? Pembakaran, ketidakcekapan, dan jurang yang melebar antara pengesanan dan tindakan. Tak satu pun dari ini harus datang sebagai kejutan kepada sesiapa yang bekerja dalam keselamatan siber. Janji Agentic AI telah muncul sebagai titik perubahan yang berpotensi. Kelas baru ini

Impak segera berbanding perkongsian jangka panjang? Dua minggu yang lalu Openai melangkah ke hadapan dengan tawaran jangka pendek yang kuat, memberikan akses kepada pelajar A.S. dan Kanada.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular