


Bagaimana untuk menggunakan model dalam Python menggunakan TensorFlow Serving?
Menggunakan model pembelajaran mesin adalah penting untuk menjadikan aplikasi kecerdasan buatan berfungsi, dan untuk menyediakan model dengan berkesan dalam persekitaran pengeluaran, TensorFlow Serving menyediakan penyelesaian yang boleh dipercayai. Apabila model dilatih dan bersedia untuk digunakan, adalah penting untuk menyampaikannya dengan cekap untuk mengendalikan permintaan masa nyata. TensorFlow Serving ialah alat berkuasa yang membantu menggunakan model pembelajaran mesin dengan lancar dalam persekitaran pengeluaran.
Dalam artikel ini, kami akan menyelami langkah-langkah yang terlibat dalam menggunakan model dalam Python menggunakan TensorFlow Serving.
Apakah itu penggunaan model?
Penempatan model melibatkan penyediaan model pembelajaran mesin terlatih untuk ramalan masa nyata. Ini bermakna memindahkan model daripada persekitaran pembangunan kepada sistem pengeluaran yang boleh mengendalikan permintaan masuk dengan cekap. TensorFlow Serving ialah sistem yang dibina khas dan berprestasi tinggi yang direka untuk menggunakan model pembelajaran mesin.
Sediakan perkhidmatan TensorFlow
Pertama, kami perlu memasang TensorFlow Serving pada sistem kami. Sila ikut langkah di bawah untuk menyediakan TensorFlow Serving -
Langkah 1: Pasang TensorFlow Serving
Mula-mula pasang TensorFlow Serving menggunakan pip pengurus pakej. Buka command prompt atau terminal dan masukkan arahan berikut -
pip install tensorflow-serving-api
Langkah 2: Mulakan pelayan perkhidmatan TensorFlow
Selepas pemasangan, mulakan pelayan TensorFlow Serving dengan menjalankan arahan berikut -
tensorflow_model_server --rest_api_port=8501 --model_name=my_model --model_base_path=/path/to/model/directory
Ganti `/path/to/model/directory` dengan laluan di mana model terlatih disimpan.
Bersedia untuk menggunakan model
Sebelum menggunakan model, ia perlu disimpan dalam format yang boleh difahami oleh TensorFlow Serving. Ikut langkah ini untuk menyediakan model anda untuk penggunaan -
Simpan model dalam format SavedModel
Dalam skrip Python, gunakan kod berikut untuk menyimpan model terlatih ke dalam format SavedModel -
import tensorflow as tf # Assuming `model` is your trained TensorFlow model tf.saved_model.save(model, '/path/to/model/directory')
Tentukan tandatangan model
Tandatangan model memberikan maklumat tentang tensor input dan output model. Gunakan fungsi `tf.saved_model.signature_def_utils.build_signature_def` untuk mentakrifkan tandatangan model. Ini adalah contoh -
inputs = {'input': tf.saved_model.utils.build_tensor_info(model.input)} outputs = {'output': tf.saved_model.utils.build_tensor_info(model.output)} signature = tf.saved_model.signature_def_utils.build_signature_def( inputs=inputs, outputs=outputs, method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME )
Simpan model dengan tandatangan
Untuk menyimpan model bersama tandatangan, gunakan kod berikut -
builder = tf.saved_model.builder.SavedModelBuilder('/path/to/model/directory') builder.add_meta_graph_and_variables( sess=tf.keras.backend.get_session(), tags=[tf.saved_model.tag_constants.SERVING], signature_def_map={ tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature } ) builder.save ()
Gunakan TensorFlow Serving untuk melayani model
Sekarang model kami sudah sedia, tiba masanya untuk menyajikannya menggunakan TensorFlow Serving. Sila ikut langkah di bawah -
Sambung dengan TensorFlow Serving
Dalam skrip Python, gunakan protokol gRPC untuk mewujudkan sambungan dengan TensorFlow Serving. Ini adalah contoh -
from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2_grpc channel = grpc.insecure_channel('localhost:8501') stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
Buat permintaan
Untuk membuat ramalan, cipta mesej protobuf permintaan dan nyatakan nama model dan nama tandatangan. Ini adalah contoh -
request = predict_pb2.PredictRequest() request.model_spec.name = 'my_model' request.model_spec.signature_name = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY request.inputs['input'].CopyFrom(tf.contrib.util.make_tensor_proto(data, shape=data.shape))
Ganti `data` dengan data input yang anda ingin ramalkan.
Hantar permintaan dan dapatkan jawapan
Hantar permintaan kepada TensorFlow Serving dan dapatkan respons. Ini adalah contoh -
response = stub.Predict(request, timeout_seconds) output = tf.contrib.util.make_ndarray(response.outputs['output'])Parameter
`timeout_seconds` menentukan masa maksimum untuk menunggu respons.
Uji model yang digunakan
Untuk memastikan model yang digunakan berfungsi dengan baik, ia mesti diuji dengan input sampel. Berikut ialah cara untuk menguji model yang digunakan -
Sediakan data sampel
Buat satu set data input sampel yang sepadan dengan format input yang dijangkakan model.
Hantar permintaan kepada model yang digunakan
Buat dan hantar permintaan kepada model yang digunakan.
request = predict_pb2.PredictRequest() request.model_spec.name = 'my_model' request.model_spec.signature_name = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY request.inputs['input'].CopyFrom(tf.contrib.util.make_tensor_proto(data, shape=data.shape))
Nilai keluaran
Bandingkan output yang diterima daripada model yang digunakan dengan output yang dijangkakan. Langkah ini memastikan model membuat ramalan yang tepat.
Menskala dan mengawasi penempatan
Apabila permintaan ramalan meningkat, adalah penting untuk menskalakan penggunaan anda untuk mengendalikan jumlah permintaan masuk yang besar. Selain itu, penggunaan pemantauan membantu menjejak prestasi dan kesihatan model yang digunakan. Pertimbangkan untuk melaksanakan strategi penskalaan dan pemantauan berikut -
Zum
Gunakan berbilang contoh TensorFlow Serving untuk pengimbangan beban.
Simpan menggunakan platform seperti Docker dan Kubernetes.
Memantau
Kumpul metrik seperti kependaman permintaan, kadar ralat dan daya pemprosesan.
Tetapkan makluman dan pemberitahuan untuk peristiwa kritikal.
Contoh
Contoh program di bawah menunjukkan cara menggunakan model menggunakan sajian TensorFlow -
import tensorflow as tf from tensorflow import keras # Load the trained model model = keras.models.load_model("/path/to/your/trained/model") # Convert the model to the TensorFlow SavedModel format export_path = "/path/to/exported/model" tf.saved_model.save(model, export_path) # Start the TensorFlow Serving server import os os.system("tensorflow_model_server --port=8501 --model_name=your_model --model_base_path={}".format(export_path))
Dalam contoh di atas, anda perlu menggantikan "/path/to/your/trained/model" dengan laluan sebenar ke model terlatih. Model akan dimuatkan menggunakan fungsi load_model() Keras.
Seterusnya, model akan ditukar kepada format TensorFlow SavedModel dan disimpan dalam laluan eksport yang ditentukan.
Kemudian gunakan fungsi os.system() untuk memulakan pelayan TensorFlow Serving, yang melaksanakan perintah tensorflow_model_server. Perintah ini menentukan port pelayan, nama model (model_anda) dan laluan asas di mana model yang dieksport berada.
Sila pastikan anda telah memasang TensorFlow Serving dan gantikan laluan fail dengan nilai yang sesuai untuk sistem anda.
Keluaran yang diingini
Selepas pelayan bermula dengan jayanya, ia akan bersedia untuk menyediakan perkhidmatan ramalan. Anda boleh menggunakan program atau API lain untuk menghantar permintaan ramalan kepada pelayan dan pelayan akan bertindak balas dengan output ramalan berdasarkan model yang dimuatkan.
Kesimpulan
Ringkasnya, adalah penting untuk menggunakan model pembelajaran mesin dalam persekitaran pengeluaran untuk memanfaatkan keupayaan ramalan mereka. Dalam artikel ini, kami meneroka proses menggunakan model dalam Python menggunakan TensorFlow Serving. Kami berbincang untuk memasang TensorFlow Serving, bersiap sedia untuk menggunakan model, menyediakan model dan menguji prestasinya. Dengan langkah berikut, kami boleh menggunakan model TensorFlow dengan jayanya dan membuat ramalan masa nyata yang tepat.
Atas ialah kandungan terperinci Bagaimana untuk menggunakan model dalam Python menggunakan TensorFlow Serving?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Dreamweaver CS6
Alat pembangunan web visual

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.