


'Menggunakan teknologi Stable Diffusion untuk menghasilkan semula imej, penyelidikan berkaitan telah diterima oleh persidangan CVPR'
Bagaimana jika kecerdasan buatan dapat membaca imaginasi anda dan mengubah imej dalam kepala anda menjadi realiti?
Namun ini kedengaran agak cyberpunk. Tetapi kertas kerja yang diterbitkan baru-baru ini telah menyebabkan kekecohan dalam kalangan AI.
Kertas kerja ini mendapati bahawa mereka menggunakan Stable Diffusion yang sangat popular baru-baru ini untuk membina semula aktiviti otak resolusi tinggi Kecekapan tinggi, imej berketepatan tinggi. Penulis menulis bahawa tidak seperti kajian terdahulu, mereka tidak perlu melatih atau memperhalusi model kecerdasan buatan untuk mencipta imej ini.
- Alamat kertas: https://www .biorxiv.org/content/10.1101/2022.11.18.517004v2.full.pdf
- Alamat halaman web: https://sites.google.com/view / stablediffusion-with-brain/
Bagaimana mereka melakukannya?
Dalam kajian ini, penulis menggunakan Stable Diffusion untuk membina semula imej aktiviti otak manusia yang diperoleh melalui pengimejan resonans magnetik berfungsi (fMRI). Penulis juga menyatakan bahawa ia juga berguna untuk memahami mekanisme model resapan terpendam dengan mengkaji pelbagai komponen fungsi berkaitan otak (seperti vektor terpendam imej Z, dsb.).
Kertas kerja ini juga telah diterima oleh CVPR 2023.
Sumbangan utama kajian ini termasuk:
- Menunjukkan bahawa rangka kerja ringkasnya boleh menjana data daripada aktiviti otak dengan kesetiaan semantik yang tinggi Bina semula imej resolusi tinggi (512×512) dalam sederhana tanpa perlu melatih atau memperhalusi model generatif dalam yang kompleks, seperti yang ditunjukkan dalam rajah di bawah; kawasan otak yang berbeza, kajian ini secara kuantitatif menerangkan setiap komponen LDM dari perspektif neurosains; maklumat sambil mengekalkan rupa imej asal.
- Tinjauan Metodologi
- Metodologi keseluruhan kajian ini ditunjukkan dalam Rajah 2 di bawah. Rajah 2 (atas) ialah gambarajah skematik LDM yang digunakan dalam kajian ini, di mana ε mewakili pengekod imej, D mewakili penyahkod imej, dan τ mewakili pengekod teks (CLIP).
Rajah 2 (bawah) ialah gambarajah skematik analisis pengekodan kajian ini. Kami membina model pengekodan untuk meramal isyarat fMRI daripada komponen LDM yang berbeza, termasuk z, c dan z_c.
Saya tidak akan memperkenalkan terlalu banyak tentang Stable Diffusion di sini, saya percaya ramai yang sudah biasa dengannya.
Keputusan
Menyahkod
Rajah 3 di bawah menunjukkan hasil pembinaan semula visual bagi subjek (subj01). Kami menghasilkan lima imej untuk setiap imej ujian dan memilih imej dengan PSM tertinggi. Di satu pihak, imej yang dibina semula hanya menggunakan z adalah konsisten secara visual dengan imej asal tetapi gagal menangkap kandungan semantiknya. Sebaliknya, imej yang dibina semula dengan hanya c menghasilkan imej dengan kesetiaan semantik yang tinggi tetapi tidak konsisten secara visual. Akhir sekali, menggunakan imej z_c yang dibina semula boleh menghasilkan imej resolusi tinggi dengan kesetiaan semantik yang tinggi.
Rajah 4 menunjukkan imej yang dibina semula bagi imej yang sama oleh semua penguji (semua imej dijana dengan z_c) . Secara keseluruhannya, kualiti pembinaan semula merentas penguji adalah stabil dan tepat.
Rajah 5 ialah hasil penilaian kuantitatif:
Model pengekodan
Rajah 6 menunjukkan pasangan model pengekodan yang berkaitan dengan LDM Ketepatan ramalan bagi tiga imej terpendam: z, imej terpendam bagi imej asal c, imej terpendam anotasi teks imej dan z_c, perwakilan imej terpendam yang bising selepas proses resapan belakang perhatian silang dengan c.
Rajah 7 menunjukkan bahawa z meramalkan aktiviti voxel merentas korteks lebih baik daripada z_c apabila sejumlah kecil hingar ditambah. Menariknya, z_c meramalkan aktiviti voxel dalam korteks visual tinggi lebih baik daripada z apabila meningkatkan tahap hingar, menunjukkan bahawa kandungan semantik imej ditekankan secara beransur-ansur.
Bagaimanakah gambaran asas bunyi tambahan berubah semasa penyahnosan berulang? Rajah 8 menunjukkan bahawa pada peringkat awal proses denoising, isyarat z mendominasi ramalan isyarat fMRI. Pada peringkat pertengahan proses denoising, z_c meramalkan aktiviti dalam korteks visual tinggi jauh lebih baik daripada z, menunjukkan bahawa kebanyakan kandungan semantik muncul pada peringkat ini. Hasilnya menunjukkan cara LDM menapis dan menjana imej daripada hingar.
Akhir sekali, penyelidik meneroka maklumat yang diproses oleh setiap lapisan U-Net. Rajah 9 menunjukkan keputusan langkah yang berbeza bagi proses penyahnosan (awal, pertengahan, lewat) dan model pengekodan lapisan berbeza U-Net. Pada peringkat awal proses denoising, lapisan bottleneck U-Net (oren) menghasilkan prestasi ramalan tertinggi di seluruh korteks. Walau bagaimanapun, apabila denoising berterusan, lapisan awal U-Net (biru) meramalkan aktiviti dalam korteks visual awal, manakala lapisan kesesakan beralih kepada kuasa ramalan yang unggul untuk korteks visual yang lebih tinggi.
Untuk butiran penyelidikan lanjut, sila lihat kertas asal.
Atas ialah kandungan terperinci 'Menggunakan teknologi Stable Diffusion untuk menghasilkan semula imej, penyelidikan berkaitan telah diterima oleh persidangan CVPR'. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Memanfaatkan kuasa AI di peranti: Membina CLI Chatbot Peribadi Pada masa lalu, konsep pembantu AI peribadi kelihatan seperti fiksyen sains. Bayangkan Alex, seorang peminat teknologi, bermimpi seorang sahabat AI yang pintar, yang tidak bergantung

Pelancaran AI4MH mereka berlaku pada 15 April, 2025, dan Luminary Dr. Tom Insel, M.D., pakar psikiatri yang terkenal dan pakar neurosains, berkhidmat sebagai penceramah kick-off. Dr. Insel terkenal dengan kerja cemerlangnya dalam penyelidikan kesihatan mental dan techno

"Kami mahu memastikan bahawa WNBA kekal sebagai ruang di mana semua orang, pemain, peminat dan rakan kongsi korporat, berasa selamat, dihargai dan diberi kuasa," kata Engelbert, menangani apa yang telah menjadi salah satu cabaran sukan wanita yang paling merosakkan. Anno

Pengenalan Python cemerlang sebagai bahasa pengaturcaraan, terutamanya dalam sains data dan AI generatif. Manipulasi data yang cekap (penyimpanan, pengurusan, dan akses) adalah penting apabila berurusan dengan dataset yang besar. Kami pernah meliputi nombor dan st

Sebelum menyelam, kaveat penting: Prestasi AI adalah spesifik yang tidak ditentukan dan sangat digunakan. Dalam istilah yang lebih mudah, perbatuan anda mungkin berbeza -beza. Jangan ambil artikel ini (atau lain -lain) sebagai perkataan akhir -sebaliknya, uji model ini pada senario anda sendiri

Membina portfolio AI/ML yang menonjol: Panduan untuk Pemula dan Profesional Mewujudkan portfolio yang menarik adalah penting untuk mendapatkan peranan dalam kecerdasan buatan (AI) dan pembelajaran mesin (ML). Panduan ini memberi nasihat untuk membina portfolio

Hasilnya? Pembakaran, ketidakcekapan, dan jurang yang melebar antara pengesanan dan tindakan. Tak satu pun dari ini harus datang sebagai kejutan kepada sesiapa yang bekerja dalam keselamatan siber. Janji Agentic AI telah muncul sebagai titik perubahan yang berpotensi. Kelas baru ini

Impak segera berbanding perkongsian jangka panjang? Dua minggu yang lalu Openai melangkah ke hadapan dengan tawaran jangka pendek yang kuat, memberikan akses kepada pelajar A.S. dan Kanada.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.