


Selesaikan cabaran pemantauan model pembelajaran mesin dengan pengurusan prestasi model (MPM)
Penterjemah |. Li Rui
Penilai |. Walaupun ledakan data telah memberikan lebih banyak peluang untuk meningkatkan ketepatan membuat keputusan, menganalisis dan memanfaatkan maklumat ini kini lebih memakan masa dan mahal. Akibatnya, perniagaan dalam semua saiz menggunakan model pembelajaran mesin (ML) yang boleh memproses sejumlah besar data dan mengenal pasti corak serta korelasi yang sering diabaikan oleh penganalisis atau mengambil masa yang tidak munasabah. Model ini mempunyai kuasa untuk meningkatkan pembuatan keputusan dan memacu hasil perniagaan yang unggul. Contohnya, sesetengah model pembelajaran mesin boleh membuat ramalan yang sangat tepat tentang seberapa cepat produk tertentu akan dijual pada tahun hadapan untuk meningkatkan perancangan pemasaran dan inventori. Perniagaan lain dapat mengenal pasti transaksi penipuan yang boleh mengakibatkan kehilangan hasil berjuta-juta dolar.
Tetapi dengan peningkatan pergantungan pada model pembelajaran mesin, keperluan untuk memantau prestasi model dan membina kepercayaan dalam kecerdasan buatan telah menjadi lebih mendesak. Tanpa pemantauan model pembelajaran mesin, MLOps dan pasukan sains data akan menghadapi masalah berikut:
- Kurang kawalan dan penyahpepijatan. Oleh kerana sistem pembelajaran mesin yang kompleks adalah legap, pengamal mungkin tidak cukup mengetahui tentang model pembelajaran mesin untuk mengetahui cara membetulkannya jika berlaku kesilapan.
- Contoh berat sebelah. Model pembelajaran mesin boleh meningkatkan berat sebelah tersembunyi dalam data yang mereka latih, mendedahkan perniagaan kepada risiko undang-undang dan reputasi serta berpotensi membawa kepada hasil yang berbahaya kepada pengguna.
- Tingkatkan prestasi pembelajaran mesin. Oleh kerana sukar untuk memahami dan menjejaki penambahbaikan yang diperlukan, model pembelajaran mesin tidak menerima pelaburan lanjut selepas keluaran awal.
- Pasukan MLOps juga berkemungkinan kurang keyakinan terhadap model mereka, yang boleh menyebabkan lebih banyak masa dihabiskan untuk projek dan lebih banyak ralat. Pemantauan model pembelajaran mesin membolehkan pembangun menyahpepijat model dalam proses perintis dan pengeluaran untuk menangkap isu semasa ia berlaku. Ini ialah cara paling berkesan untuk mencapai penyelesaian AI yang boleh dijelaskan, adil dan beretika, yang penting dalam dunia hari ini. Katakan bank menggunakan sistem pembelajaran mesin untuk meluluskan pinjaman Mereka mungkin menerima aduan pelanggan yang bertanya kepada bank mengapa pinjaman tertentu ditolak, dan bank akan bertanggungjawab untuk menjelaskan sebab model itu membuat keputusan itu. Mengesan jawapan kepada soalan ini hampir mustahil tanpa penyelesaian pemantauan yang betul.
Sama ada model pembelajaran mesin bertanggungjawab untuk meramal penipuan, meluluskan pinjaman atau menyasarkan iklan, perubahan kecil yang berlaku boleh menyebabkan hanyut model, pelaporan tidak tepat atau berat sebelah—semuanya boleh mengakibatkan kehilangan hasil dan memberi kesan kepada jenama kredibiliti.
Cabaran Pemantauan Model Hari Ini
Malangnya, pemantauan model pembelajaran mesin telah menjadi lebih kompleks disebabkan oleh kepelbagaian dan bilangan model pembelajaran mesin yang bergantung kepada organisasi hari ini. Model pembelajaran mesin kini menyediakan pelbagai jenis kes penggunaan, seperti anti-pengubahan wang haram, pemadanan pekerjaan, diagnostik klinikal dan pengawasan planet. Mereka juga datang dalam banyak perwakilan yang berbeza (jadual, siri masa, teks, imej, video dan audio). Walaupun model ini boleh mengendalikan sejumlah besar data yang perlu diusahakan oleh perniagaan, menjejaki mereka adalah lebih sukar dan mahal.
Sesetengah perusahaan telah menggunakan penyelesaian pemantauan infrastruktur tradisional yang direka untuk menyokong keterlihatan operasi yang luas untuk mengatasi cabaran ini. Yang lain cuba mencipta alat mereka sendiri secara dalaman. Dalam kedua-dua kes, penyelesaian ini sering gagal memenuhi keperluan unik sistem pembelajaran mesin. Tidak seperti sistem perisian tradisional, prestasi sistem pembelajaran mesin tidak menentu dan bergantung pada pelbagai faktor seperti kemusim, arah aliran tingkah laku pengguna baharu dan selalunya sistem data huluan berdimensi tinggi. Contohnya, model iklan yang berfungsi dengan sempurna mungkin perlu dikemas kini apabila musim cuti baharu tiba. Begitu juga, model pembelajaran mesin yang dilatih untuk mengesyorkan kandungan di Amerika Syarikat mungkin tidak diterjemahkan dengan baik kepada pendaftaran pengguna antarabangsa. Sebagai alternatif, perniagaan sering menghadapi masalah tidak dapat membuat skala kerana model yang sudah lapuk, masa penyelesaian masalah pengeluaran yang terbuang dan kos tambahan untuk penyelenggaraan alat dalaman.
Untuk membolehkan keterlihatan dan kebolehjelasan dalam model pembelajaran mesin dan mengatasi cabaran pemantauan model biasa, perusahaan memerlukan penyelesaian yang boleh memantau, mentafsir, menganalisis dan menambah baik model pembelajaran mesin dan menerima pakai model Pengurusan Prestasi (MPM) dengan mudah.
Cara Pengurusan Prestasi Model (MPM) Menangani Prestasi dan Bias
Pengurusan Prestasi Model (MPM) ialah sistem kawalan berpusat di tengah aliran kerja pembelajaran mesin yang menjejaki prestasi pada semua peringkat prestasi kitaran hayat model, dan menutup gelung maklum balas pembelajaran mesin. Dengan Pengurusan Prestasi Model (MPM), perusahaan boleh menemui cerapan yang mendalam dan boleh diambil tindakan melalui penjelasan dan analisis punca, sambil segera menimbulkan isu prestasi pembelajaran mesin untuk mengelakkan kesan perniagaan yang negatif.
Pengurusan Prestasi Model (MPM) menilai semula nilai dan prestasi perniagaan model secara berterusan dan automatik, mengeluarkan makluman tentang prestasi model dalam pengeluaran dan membantu pembangun bertindak balas secara proaktif pada tanda pertama berat sebelah. Oleh kerana Pengurusan Prestasi Model (MPM) menjejaki gelagat model dari latihan hingga keluaran, ia juga boleh menerangkan faktor yang membawa kepada ramalan tertentu. Menggabungkan pemantauan model dengan tonggak kebolehcerap pembelajaran mesin yang lain seperti kebolehjelasan dan keadilan model menyediakan jurutera pembelajaran mesin dan saintis data dengan kit alat komprehensif yang boleh dibenamkan ke dalam aliran kerja pembelajaran mesin mereka, dan menyediakan satu papan pemuka merentas pengesahan model dan kes penggunaan pemantauan. Perusahaan mendapat manfaat daripada pengurusan prestasi model (MPM) bukan sahaja kerana ia menjadikan pemantauan model lebih cekap, tetapi juga kerana ia mengurangkan kejadian berat sebelah yang membawa kepada denda kawal selia yang mahal atau kerosakan reputasi. Model pembelajaran mesin memerlukan pemantauan dan latihan semula model berterusan sepanjang kitaran hayatnya. Pengurusan Prestasi Model (MPM) membolehkan pembangun bukan sahaja memperoleh keyakinan dan kecekapan yang lebih tinggi dalam model mereka, tetapi juga memahami dan mengesahkan sebab dan proses di sebalik keputusan AI mereka.
Tajuk asal: Menyelesaikan Cabaran Pemantauan Model ML dengan Pengurusan Prestasi Model (MPM) , Pengarang: Krishnaram Kenthapadi
Atas ialah kandungan terperinci Selesaikan cabaran pemantauan model pembelajaran mesin dengan pengurusan prestasi model (MPM). Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Memanfaatkan kuasa AI di peranti: Membina CLI Chatbot Peribadi Pada masa lalu, konsep pembantu AI peribadi kelihatan seperti fiksyen sains. Bayangkan Alex, seorang peminat teknologi, bermimpi seorang sahabat AI yang pintar, yang tidak bergantung

Pelancaran AI4MH mereka berlaku pada 15 April, 2025, dan Luminary Dr. Tom Insel, M.D., pakar psikiatri yang terkenal dan pakar neurosains, berkhidmat sebagai penceramah kick-off. Dr. Insel terkenal dengan kerja cemerlangnya dalam penyelidikan kesihatan mental dan techno

"Kami mahu memastikan bahawa WNBA kekal sebagai ruang di mana semua orang, pemain, peminat dan rakan kongsi korporat, berasa selamat, dihargai dan diberi kuasa," kata Engelbert, menangani apa yang telah menjadi salah satu cabaran sukan wanita yang paling merosakkan. Anno

Pengenalan Python cemerlang sebagai bahasa pengaturcaraan, terutamanya dalam sains data dan AI generatif. Manipulasi data yang cekap (penyimpanan, pengurusan, dan akses) adalah penting apabila berurusan dengan dataset yang besar. Kami pernah meliputi nombor dan st

Sebelum menyelam, kaveat penting: Prestasi AI adalah spesifik yang tidak ditentukan dan sangat digunakan. Dalam istilah yang lebih mudah, perbatuan anda mungkin berbeza -beza. Jangan ambil artikel ini (atau lain -lain) sebagai perkataan akhir -sebaliknya, uji model ini pada senario anda sendiri

Membina portfolio AI/ML yang menonjol: Panduan untuk Pemula dan Profesional Mewujudkan portfolio yang menarik adalah penting untuk mendapatkan peranan dalam kecerdasan buatan (AI) dan pembelajaran mesin (ML). Panduan ini memberi nasihat untuk membina portfolio

Hasilnya? Pembakaran, ketidakcekapan, dan jurang yang melebar antara pengesanan dan tindakan. Tak satu pun dari ini harus datang sebagai kejutan kepada sesiapa yang bekerja dalam keselamatan siber. Janji Agentic AI telah muncul sebagai titik perubahan yang berpotensi. Kelas baru ini

Impak segera berbanding perkongsian jangka panjang? Dua minggu yang lalu Openai melangkah ke hadapan dengan tawaran jangka pendek yang kuat, memberikan akses kepada pelajar A.S. dan Kanada.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Dreamweaver CS6
Alat pembangunan web visual

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa