Rumah  >  Artikel  >  pembangunan bahagian belakang  >  Master Python mengembalikan fungsi, penutupan, penghias dan fungsi separa dalam satu artikel

Master Python mengembalikan fungsi, penutupan, penghias dan fungsi separa dalam satu artikel

WBOY
WBOYke hadapan
2022-06-30 16:57:101670semak imbas

Artikel ini membawakan anda pengetahuan yang berkaitan tentang Python Ia terutamanya menganjurkan isu berkaitan pengaturcaraan lanjutan, termasuk fungsi pemulangan, penutupan, penghias, fungsi separa, dll. Mari kita lihat bersama-sama, saya harap. ia akan membantu semua orang.

Master Python mengembalikan fungsi, penutupan, penghias dan fungsi separa dalam satu artikel

[Cadangan berkaitan: Tutorial video Python3 ]

1. Fungsi pengembalian

Fungsi pesanan lebih tinggi boleh Selain menerima fungsi sebagai parameter, anda juga boleh mengembalikan fungsi sebagai nilai hasil. Apabila kita mengendalikan fungsi tersebut, jika kita tidak perlu menjumlahkan dengan segera, kita boleh mengiranya seperti yang diperlukan dalam kod berikut
Sebagai contoh, di bawah

# -*- coding: utf-8 -*-# python 全栈# author : a wei # 开发时间: 2022/6/23 22:41def sum_fun_a(*args):
    a = 0
    for n in args:
        a = a + n      
    return a

adalah hasil yang saya lakukan'. t perlu mengira dengan segera. Kaedah sum_fun tidak mengembalikan hasil penjumlahan, tetapi fungsi penjumlahan Sebagai contoh, di bawah

# -*- coding: utf-8 -*-# python 全栈# author : a wei # 开发时间: 2022/6/23 22:41def sum_fun_b(*args):
    def sum_a():
        a = 0
        for n in args:
            a = a + n        return a    return sum_a

Apabila kita memanggil sum_fun_b(), apa yang dikembalikan bukanlah hasil penjumlahan. tetapi fungsi penjumlahan. sum_a, apabila kita melaraskan fungsi sum_fun_b, kita menetapkannya kepada pembolehubah

f1 = sum_fun_b(1, 2, 3, 4, 5)#  此时f为一个对象实例化,并不会直接生成值print(f1())  # 15f2 = sum_fun_b(1, 2, 3, 4, 5)f3 = sum_fun_b(1, 2, 3, 4, 5)print(f2, f3)<function>.sum_a at 0x0000016E1E1EFD30> <function>.sum_a at 0x0000016E1E1EF700>print(id(f2), id(f3))1899067537152 1899067538880</function></function>

Pada masa ini, nilai yang kita dapat secara langsung ialah 15. Kemudian anda boleh memikirkannya kali ini, f = sum_a, maka terdapat Ke manakah perginya parameter soalan?
Dan kita melihat bahawa kedua-dua kaedah yang dicipta tidak mempengaruhi satu sama lain, alamat dan nilai adalah berbeza

Fungsi sum_a ditakrifkan dalam fungsi sum_fun_b, dan fungsi dalaman sum_a boleh merujuk kepada parameter sum_fun_b fungsi luaran dan pembolehubah tempatan, apabila sum_fun_b mengembalikan fungsi sum_a, parameter dan pembolehubah yang sepadan disimpan dalam fungsi yang dikembalikan, yang dipanggil penutupan di sini.


2. Penutupan

Apakah itu penutupan?
Mari kita lihat sekeping kod dahulu

# 定义一个函数def fun_a(num_a):# 在函数内部再定义⼀个函数# 并且这个内部函数⽤到了外部的变量,这个函数以及⽤到外部函数的变量及参数叫 闭包
    def fun_b(num_b):
        print('内嵌函数fun_b的参数是:%s,外部函数fun_a的参数是:%s' % (num_b, num_a))
        return num_a + num_b    
    # 这里返回的就是闭包的结果
    return fun_b# 给fun_a函数赋值,这个10就是传参给fun_aret = fun_a(10)# 注意这里的10其实是赋值给fun_bprint(ret(10))# 注意这里的90其实是赋值给fun_bprint(ret(90))

Hasil pelaksanaan:

内嵌函数fun_b的参数是:10,外部函数fun_a的参数是:1020内嵌函数fun_b的参数是:90,外部函数fun_a的参数是:10100

Pada masa ini, fungsi dalaman merujuk kepada pembolehubah skop fungsi luaran (pembolehubah global) , Fungsi dalaman dipanggil penutupan.

Penutupan di sini perlu mempunyai tiga syarat

"""
三个条件,缺一不可: 
1)必须有一个内嵌函数(函数里定义的函数)——这对应函数之间的嵌套 
2)内嵌函数必须引用一个定义在闭合范围内(外部函数里)的变量——内部函数引用外部变量
3)外部函数必须返回内嵌函数——必须返回那个内部函数
"""

"python# python交互环境编辑器 >>> def counter(start=0): 
	count = [start]
	def incr(): 
		count[0] += 1 
		return count[0] 
		return incr 
		
>>> c1 = counter(5)>>> print(c1()) 6>>> print(c1()) 7>>> c2=counter(50) >>> print(c2()) 51>>> print(c2()) >52>>>

Apabila fungsi tidak dapat mencari pengisytiharan berubah dalam skop setempat, ia akan mencarinya di luar fungsi ini adalah Penutupan fungsi adalah sangat biasa, tetapi selepas menggunakan pembolehubah dalam skop setempat, jika anda ingin menukar tugasan kepada pembolehubah ini, ralat akan dilaporkan

def test(): 
	 count = 1 
	 def add(): 
		  print(count) 
		  count += 1 
	 return add 
a = test() a()

Mesej ralat:

Traceback (most recent call last): ...... UnboundLocalError: local variable 'count' referenced before assignment

Jika saya boleh menyelesaikan masalah ini dengan menambah baris kiraan bukan tempatan dalam fungsi
Kod

# -*- coding: UTF-8 -*- # def test(): 
	 # count不是局部变量,介于全局变量和局部变量之间的一种变量,nonlocal标识
	 count = 1 
	 def add(): 
		  nonlocal count 
		  print(count) 
		  count += 1 
		  return count 	 return add 

a = test() a() # 1 a() # 2

Pembolehubah yang diisytiharkan oleh bukan tempatan bukanlah pembolehubah tempatan, mahupun pembolehubah global, tetapi dalam pembolehubah fungsi bersarang luaran.

Jika kita melihatnya dari perspektif lain, kita telah menambah fungsi merakam status fungsi pada fungsi ini. Sudah tentu, ini juga boleh dicapai dengan mengisytiharkan pembolehubah global untuk meningkatkan status fungsi. Apabila ini berlaku, masalah berikut akan berlaku:

1. 每次调用函数时,都得在全局作用域申明变量。别人调用函数时还得查看函数内部代码。 
3. 当函数在多个地方被调用并且同时记录着很多状态时,会造成非常地混乱。

Kelebihan menggunakan bukan tempatan ialah tidak perlu menambah pembolehubah global tambahan apabila menambah keadaan pada fungsi, jadi ini fungsi boleh dipanggil dalam jumlah yang besar dan pada masa yang sama Keadaan fungsi berbilang direkodkan, dan setiap fungsi adalah bebas dan unik. Malah, terdapat kaedah lain untuk fungsi ini, iaitu menggunakan kelas Dengan mentakrifkan __call__, anda boleh memanggil terus

pada contoh seperti fungsi >

Hasil larian ialah
def line_conf(a, b): 
	def line(x): 
		return a * x + b 
		
	return line
	
line1 = line_conf(1, 1) line2 = line_conf(4, 5) print(line1(5)) 
	print(line2(5))

Daripada kod ini, baris fungsi dan pembolehubah a dan b membentuk penutupan. Apabila membuat penutupan, kami menentukan nilai kedua-dua pembolehubah ini melalui parameter a dan b line_conf Dengan cara ini, kami menentukan bentuk akhir fungsi (y = x 1 dan y = 4x 5). Kita hanya perlu mengubah parameter a dan b untuk mendapatkan
625
fungsi ekspresi garis lurus yang berbeza. Daripada ini, kita dapat melihat bahawa penutupan juga memainkan peranan dalam meningkatkan kebolehgunaan semula kod. Jika tiada penutupan, kita perlu menyatakan a, b, x setiap kali kita mencipta fungsi. Dengan cara ini, kita perlu lulus lebih banyak parameter dan mengurangkan kemudahalihan kod.


Tetapi ia masih belum berakhir, kita tahu bahawa fungsi dalaman merujuk kepada parameter atau nilai fungsi luaran dan menjalankan operasi fungsi dalaman sepenuhnya, tetapi mungkin juga merupakan nilai dalam fungsi luaran. , kita juga perlu tahu bahawa fungsi yang dikembalikan tidak akan dilaksanakan serta-merta, tetapi tidak akan dilaksanakan sehingga fungsi dipanggil
1.闭包似优化了变量,原来需要类对象完成的⼯作,闭包也可以完成 
2.由于闭包引⽤了外部函数的局部变量,则外部函数的局部变量没有及时释放,消耗内存
.


Lihat kod:

Fungsi fun_a dicipta di sini Parameter fun_list bagi fungsi luaran mentakrifkan senarai Semasa traversal, fungsi gelung fun_b merujuk kepada luaran pembolehubah i untuk mengira hasil pulangan , menambah pada senarai, setiap kali ia gelung, fungsi baharu dicipta, dan kemudian ketiga-tiga fungsi yang dicipta dikembalikan
def fun_a(): 
	fun_list = [] 
	for i in range(1, 4): 
		def fun_b(): 
			return i * i 
			
			fun_list.append(fun_b) 
		return fun_list 
		
f1, f2, f3 = fun_a() print(f1(), f2(), f3())# 结果:9,9,9

, tetapi keputusan sebenar bukanlah 1,4. ,9 kita mahu, tetapi 9, 9, 9, mengapa ini?

Ini kerana fungsi yang dikembalikan merujuk kepada pembolehubah i tetapi tidak dilaksanakan serta-merta. Apabila ketiga-tiga fungsi kembali, pembolehubah i yang mereka rujuk telah menjadi 3. Objek yang dirujuk oleh setiap fungsi bebas adalah pembolehubah yang sama, tetapi apabila nilai dikembalikan, apabila ketiga-tiga fungsi kembali, nilai telah Operasi selesai dan disimpan. Apabila fungsi dipanggil, nilai yang dijana tidak akan mencapai apa yang anda mahukan.

Kita boleh menyelesaikannya dengan menugaskan i di sini untuk _

def test3():
    func_list = []
    for i in range(1, 4):

        def test4(i_= i):
            return i_**2

        func_list.append(test4)
    return func_list


f1, f2, f3 = test3()print(f1(), f2(), f3())

可以再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变,那我们就可以完成下面的代码

# -*- coding: UTF-8 -*- # def fun_a(): 
	def fun_c(i): 
		def fun_b(): 
			return i * i 
			
		return fun_b 

	fun_list = [] 
	for i in range(1, 4): 
		# f(i)立刻被执行,因此i的当前值被传入f() 
		fun_list.append(fun_c(i)) 
	return fun_list 


f1, f2, f3 = fun_a() print(f1(), f2(), f3()) # 1 4 9

3.装饰器 wraps

什么是装饰器?

看一段代码:

# -*- coding: utf-8 -*-# python 全栈# author : a wei # 开发时间: 2022/6/24 17:03def eat():
    print('吃饭')def test1(func):
    def test2():
        print('做饭')
        
        func()
        
        print('洗碗')
    return test2


eat()  # 调用eat函数# 吃饭test1(eat)()# 做饭# 吃饭# 洗碗

由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。也可以将函数赋值变量,做参传入另一个函数。

1>什么是装饰器

"""
装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值 也是一个函数对象。 
它经常用于有以下场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景。装饰器是解决这类问题的绝 佳设计
"""

装饰器的作用就是为已经存在的对象添加额外的功能
先看代码:

# -*- coding: utf-8 -*-# python 全栈# author : a wei # 开发时间: 2022/6/24 17:03def test1(func):
    def test2():
        print('做饭')
        func()
        print('洗碗')
    return test2@test1  # 装饰器def eat():
    print('吃饭')eat()# 做饭# 吃饭# 洗碗

我们没有直接将eat函数作为参数传入test1中,只是将test1函数以@方式装饰在eat函数上。
也就是说,被装饰的函数,函数名作为参数,传入到装饰器函数上,不影响eat函数的功能,再此基础上可以根据业务或者功能增加条件或者信息。

(注意:@在装饰器这里是作为Python语法里面的语法糖写法,用来做修饰。)

但是我们这里就存在一个问题这里引入魔术方法 name 这是属于 python 中的内置类属性,就是它会天生就存在与一个 python 程序中,代表对应程序名称,一般一段程序作为主线运行程序时其内置名称就是 main ,当自己作为模块被调用时就是自己的名字

代码:

print(eat.__name__)# test2

这并不是我们想要的!输出应该是" eat"。这里的函数被test2替代了。它重写了我们函数的名字和注释文档,那怎么阻止变化呢,Python提供functools模块里面的wraps函数解决了问题

代码:

 -*- coding: utf-8 -*-
 from functools import wrapsdef test1(func):
    @wraps(func)
    def test2():
        print('做饭')
        func()
        print('洗碗')
    return test2@test1  # 装饰器def eat():
    print('吃饭')eat()# 做饭# 吃饭# 洗碗print(eat.__name__)# eat

我们在装饰器函数内,作用eat的test2函数上也增加了一个装饰器wraps还是带参数的。
这个装饰器的功能就是不改变使用装饰器原有函数的结构。

我们熟悉了操作,拿来熟悉一下具体的功能实现,我们可以写一个打印日志的功能

# -*- coding: utf-8 -*-# python 全栈# author : a wei # 开发时间: 2022/6/24 17:42import timefrom functools import wrapsdef logger(func):
    @wraps(func)
    def write_log():
        print('[info]--时间:%s' % time.strftime('%Y-%m-%d %H:%M:%S'))
        func()
    return write_log@loggerdef work():
    print('我在工作')work()# [info]--时间:2022-06-24 17:52:11# 我在工作print(work.__name__)#work

2>带参装饰器

我们也看到装饰器wraps也是带参数的,那我们是不是也可以定义带参数的装饰器呢,我们可以使用一个函数来包裹装饰器,调入这个参数。

# -*- coding: utf-8 -*-# python 全栈# author : a wei # 开发时间: 2022/6/24 17:42import timefrom functools import wrapsdef logs(func):
    @wraps(func)
    def write_log(*args, **kwargs):
        print('[info]--时间:%s' % time.strftime('%Y-%m-%d %H:%M:%S'))
        func(*args, **kwargs)
    return write_log@logsdef work():
    print('我在工作')@logsdef work2(name1, name2):
    print('%s和%s在工作' % (name1, name2))work2('张三', '李四')# [info]--时间:2022-06-24 18:04:04# 张三和李四在工作

3>函数做装饰器

把日志写入文件

# -*- coding: utf-8 -*-# python 全栈# author : a wei# 开发时间: 2022/6/20 0:06import timefrom functools import wrapsdef logger(file):
    def logs(fun):
        @wraps(fun)
        def write_log(*args, **kwargs):
            log = '[info] 时间是:%s' % time.strftime('%Y-%m-%d %H:%M:%S')
            print(log)
            with open(file, 'a+') as f:
                f.write(log)
            fun(*args, **kwargs)
        return write_log    return logs@logger('work.log')  # 使用装饰器来给 work函数增加记录日志的功能def work(name, name2):  # 1.当前 work可能有多个参数 2.自定义日志文件的名字和位置,记录日志级别
    print(f'{name}和{name2}在工作')work('张三', '李四')

终端输出:
Master Python mengembalikan fungsi, penutupan, penghias dan fungsi separa dalam satu artikel

这里生成里work.log日志文件
Master Python mengembalikan fungsi, penutupan, penghias dan fungsi separa dalam satu artikel
里面记录日志
Master Python mengembalikan fungsi, penutupan, penghias dan fungsi separa dalam satu artikel
这里我们将带参数的带入进去根据代码流程执行生成了文件并将文件打印进去现在我们有了能用于正式环境的logs装饰器,但当我们的应用的某些部分还比较脆弱时,异常也许是需要更紧急关注的事情。

比方说有时你只想打日志到一个文件。而有时你想把引起你注意的问题发送到一个email,同时也保留
日志,留个记录。

这是一个使用继承的场景,但目前为止我们只看到过用来构建装饰器的函数。

4>类做装饰器

# -*- coding: utf-8 -*-# python 全栈# author : a wei# 开发时间: 2022/6/20 0:06import timefrom functools import wraps# 不使用函数做装饰器,使用类做装饰器class Logs(object):
    def __init__(self, log_file='out.log', level='info'):
        # 初始化一个默认文件和默认日志级别
        self.log_file = log_file
        self.level = level    def __call__(self, fun):  # 定义装饰器,需要一个接受函数
        @wraps(fun)
        def write_log(name, name2):
            log = '[%s] 时间是:%s' % (self.level, time.strftime('%Y-%m-%d %H:%M:%S'))
            print(log)
            with open(self.log_file, 'a+') as f:
                f.write(log)
            fun(name, name2)
        return write_log@Logs()  # 使用装饰器来给 work函数增加记录日志的功能def work(name, name2):  # 1.当前 work可能有多个参数 2.自定义日志文件的名字和位置,记录日志级别
    print(f'{name}和{name2}在工作')work('张三', '李四')  # 调用work函数

这个实现有一个优势,在于比嵌套函数的方式更加整洁,而且包裹一个函数还是使用跟以前一样的语法

4.偏函数 partial

Python的 functools 模块提供了很多有用的功能,其中一个就是偏函(Partial function)。要注意,这里的偏函数和数学意义上的偏函数不一样。

在介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度。而偏函数也可以做到这一点。

例如:int() 函数可以把字符串转换为整数,当仅传入字符串时, int() 函数默认按十进制转换

>>> int('123') 123

但 int() 函数还提供额外的 base 参数,默认值为 10 。如果传入 base 参数,就可以做进制的转换

>>> int('12345', base=8) 5349 >>> int('12345', 16) 74565

如果要转换大量的二进制字符串,每次都传入 int(x, base=2) 非常麻烦,于是,我们想到,可以定义一个int2() 的函数,默认把 base=2 传进去:

代码:

# 定一个转换义函数 >>> def int_1(num, base=2): 
		return int(num, base) 
		>>> int_1('1000000') 64>>> int_1('1010101') 85

把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单
继续优化,functools.partial 就是帮助我们创建一个偏函数的,不需要我们自己定义 int_1() ,可以直接使用下面的代码创 建一个新的函数 int_1

# 导入 >>> import functools 

# 偏函数处理 >>> int_2 = functools.partial(int, base=2) >>> int_2('1000000') 64>>> int_2('1010101') 85

理清了 functools.partial 的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。

注意到上面的新的 int_2 函数,仅仅是把 base 参数重新设定默认值为 2 ,但也可以在函数调用时传入其他值实际上固定了int()函数的关键字参数 base

int2('10010')

相当于是:

kw = { base: 2 } int('10010', **kw)

当函数的参数个数太多,需要简化时,使用 functools.partial 可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单

【相关推荐:Python3视频教程

Atas ialah kandungan terperinci Master Python mengembalikan fungsi, penutupan, penghias dan fungsi separa dalam satu artikel. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Artikel ini dikembalikan pada:csdn.net. Jika ada pelanggaran, sila hubungi admin@php.cn Padam