Schema是什么?
不管我们做什么应用,只要和用户输入打交道,就有一个原则--永远不要相信用户的输入数据。意味着我们要对用户输入进行严格的验证,web开发时一般输入数据都以JSON形式发送到后端API,API要对输入数据做验证。一般我都是加很多判断,各种if,导致代码很丑陋,能不能有一种方式比较优雅的验证用户数据呢?Schema就派上用场了。本文主要介绍了MySQL数据库设计之利用Python操作Schema方法详解,还是比较不错的,这里分享给大家,供需要的朋友参考。
㈠ MySQLdb部分
表结构:
mysql> use sakila; mysql> desc actor; +-------------+----------------------+------+-----+-------------------+-----------------------------+ | Field | Type | Null | Key | Default | Extra | +-------------+----------------------+------+-----+-------------------+-----------------------------+ | actor_id | smallint(5) unsigned | NO | PRI | NULL | auto_increment | | first_name | varchar(45) | NO | | NULL | | | last_name | varchar(45) | NO | MUL | NULL | | | last_update | timestamp | NO | | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP | +-------------+----------------------+------+-----+-------------------+-----------------------------+ 4 rows in set (0.00 sec)
数据库连接模块:
[root@DataHacker ~]# cat dbapi.py #!/usr/bin/env ipython #coding = utf-8 #Author: linwaterbin@gmail.com #Time: 2014-1-29 import MySQLdb as dbapi USER = 'root' PASSWD = 'oracle' HOST = '127.0.0.1' DB = 'sakila' conn = dbapi.connect(user=USER,passwd=PASSWD,host=HOST,db=DB)
1 打印列的元数据
[root@DataHacker ~]# cat QueryColumnMetaData.py #!/usr/bin/env ipython from dbapi import * cur = conn.cursor() statement = """select * from actor limit 1""" cur.execute(statement) print "output column metadata....." print for record in cur.description: print record cur.close() conn.close()
1.)调用execute()之后,cursor应当设置其description属性
2.)是个tuple,共7列:列名、类型、显示大小、内部大小、精度、范围以及一个是否接受null值的标记
[root@DataHacker ~]# chmod +x QueryColumnMetaData.py [root@DataHacker ~]# ./QueryColumnMetaData.py output column metadata..... ('actor_id', 2, 1, 5, 5, 0, 0) ('first_name', 253, 8, 45, 45, 0, 0) ('last_name', 253, 7, 45, 45, 0, 0) ('last_update', 7, 19, 19, 19, 0, 0)
2 通过列名访问列值
默认情况下,获取方法从数据库作为"行"返回的值是元组
In [1]: from dbapi import * In [2]: cur = conn.cursor() In [3]: v_sql = "select actor_id,last_name from actor limit 2" In [4]: cur.execute(v_sql) Out[4]: 2L In [5]: results = cur.fetchone() In [6]: print results[0] 58 In [7]: print results[1] AKROYD
我们能够借助cursorclass属性来作为字典返回
In [2]: import MySQLdb.cursors In [3]: import MySQLdb In [4]: conn = MySQLdb.connect(user='root',passwd='oracle',host='127.0.0.1',db='sakila',cursorclass=MySQLdb.cursors.DictCursor) In [5]: cur = conn.cursor() In [6]: v_sql = "select actor_id,last_name from actor limit 2" In [7]: cur.execute(v_sql) Out[7]: 2L In [8]: results = cur.fetchone() In [9]: print results['actor_id'] 58 In [10]: print results['last_name'] AKROYD
㈡ SQLAlchemy--SQL炼金术师
虽然SQL有国际标准,但遗憾的是,各个数据库厂商对这些标准的解读都不一样,并且都在标准的基础上实现了各自的私有语法。为了隐藏不同SQL“方言”之间到区别,人们开发了诸如SQLAlchemy之类的工具
SQLAlchemy连接模块:
[root@DataHacker Desktop]# cat sa.py import sqlalchemy as sa engine = sa.create_engine('mysql://root:oracle@127.0.0.1/testdb',pool_recycle=3600) metadata = sa.MetaData()
example 1:表定义
In [3]: t = Table('t',metadata, ...: Column('id',Integer), ...: Column('name',VARCHAR(20)), ...: mysql_engine='InnoDB', ...: mysql_charset='utf8' ...: ) In [4]: t.create(bind=engine)
example 2:表删除
有2种方式,其一: In [5]: t.drop(bind=engine,checkfirst=True) 另一种是: In [5]: metadata.drop_all(bind=engine,checkfirst=True),其中可以借助tables属性指定要删除的对象
example 3: 5种约束
3 .1 primary key 下面2种方式都可以,一个是列级,一个是表级 In [7]: t_pk_col = Table('t_pk_col',metadata,Column('id',Integer,primary_key=True),Column('name',VARCHAR(20))) In [8]: t_pk_col.create(bind=engine) In [9]: t_pk_tb = Table('t_pk_01',metadata,Column('id',Integer),Column('name',VARCHAR(20)),PrimaryKeyConstraint('id','name',name='prikey')) In [10]: t_pk_tb.create(bind=engine) 3.2 Foreign Key In [13]: t_fk = Table('t_fk',metadata,Column('id',Integer,ForeignKey('t_pk.id'))) In [14]: t_fk.create(bind=engine) In [15]: t_fk_tb = Table('t_fk_tb',metadata,Column('col1',Integer),Column('col2',VARCHAR(10)),ForeignKeyConstraint(['col1','col2'],['t_pk.id','t_pk.name'])) In [16]: t_fk_tb.create(bind=engine) 3.3 unique In [17]: t_uni = Table('t_uni',metadata,Column('id',Integer,unique=True)) In [18]: t_uni.create(bind=engine) In [19]: t_uni_tb = Table('t_uni_tb',metadata,Column('col1',Integer),Column('col2',VARCHAR(10)),UniqueConstraint('col1','col2')) In [20]: t_uni_tb.create(bind=engine) 3.4 check 虽然能成功,但MySQL目前尚未支持check约束。这里就不举例了。 3.5 not null In [21]: t_null = Table('t_null',metadata,Column('id',Integer,nullable=False)) In [22]: t_null.create(bind=engine)
4 默认值
分2类:悲观(值由DB Server提供)和乐观(值由SQLAlshemy提供),其中乐观又可分:insert和update
4.1 例子:insert In [23]: t_def_inser = Table('t_def_inser',metadata,Column('id',Integer),Column('name',VARCHAR(10),server_default='cc')) In [24]: t_def_inser.create(bind=engine) 3.2 例子:update In [25]: t_def_upda = Table('t_def_upda',metadata,Column('id',Integer),Column('name',VARCHAR(10),server_onupdate='DataHacker')) In [26]: t_def_upda.create(bind=engine) 3.3 例子:Passive In [27]: t_def_pass = Table('t_def_pass',metadata,Column('id',Integer),Column('name',VARCHAR(10),DefaultClause('cc'))) In [28]: t_def_pass.create(bind=engine)
㈢ 隐藏Schema
数据的安全是否暴露在完全可信任的对象面前,这是任何有安全意识的DBA都不会去冒的风险。比较好的方式是尽可能隐藏Schema结构并验证用户输入的数据完整性,这在一定程度上虽然增加了运维成本,但安全无小事。
这里借助开发一个命令行工具来阐述该问题
需求:隐藏表结构,实现动态查询,并将结果模拟mysql \G输出
版本: [root@DataHacker ~]# ./sesc.py --version 1.0 查看帮助: [root@DataHacker ~]# ./sesc.py -h Usage: sesc.py [options] <arg1> <arg2> [<arg3>...] Options: --version show program's version number and exit -h, --help show this help message and exit -q TERM assign where predicate -c COL, --column=COL assign query column -t TABLE assign query table -f, --format -f must match up -o -o OUTFILE assign output file 我们要的效果: [root@DataHacker ~]# ./sesc.py -t actor -c last_name -q s% -f -o output.txt [root@DataHacker ~]# cat output.txt ************ 1 row ******************* actor_id: 180 first_name: JEFF last_name: SILVERSTONE last_update: 2006-02-15 04:34:33 ************ 2 row ******************* actor_id: 195 first_name: JAYNE last_name: SILVERSTONE last_update: 2006-02-15 04:34:33 ......<此处省略大部分输出>......
请看代码
#!/usr/bin/env python import optparse from dbapi import * #构造OptionParser实例,配置期望的选项 parser = optparse.OptionParser(usage="%prog [options] <arg1> <arg2> [<arg3>...]",version='1.0',) #定义命令行选项,用add_option一次增加一个 parser.add_option("-q",action="store",type="string",dest="term",help="assign where predicate") parser.add_option("-c","--column",action="store",type="string",dest="col",help="assign query column") parser.add_option("-t",action="store",type="string",dest="table",help="assign query table") parser.add_option("-f","--format",action="store_true",dest="format",help="-f must match up -o") parser.add_option("-o",action="store",type="string",dest="outfile",help="assign output file") #解析命令行 options,args = parser.parse_args() #把上述dest值赋给我们自定义的变量 table = options.table column = options.col term = options.term format = options.format #实现动态读查询 statement = "select * from %s where %s like '%s'"%(table,column,term) cur = conn.cursor() cur.execute(statement) results = cur.fetchall() #模拟 \G 输出形式 if format is True: columns_query = "describe %s"%(table) cur.execute(columns_query) heards = cur.fetchall() column_list = [] for record in heards: column_list.append(record[0]) output = "" count = 1 for record in results: output = output + "************ %s row ************\n\n"%(count) for field_no in xrange(0, len(column_list)): output = output + column_list[field_no]+ ": " + str(record[field_no]) + "\n" output = output + "\n" count = count + 1 else: output = [] for record in xrange(0,len(results)): output.append(results[record]) output = ''.join(output) #把输出结果定向到指定文件 if options.outfile: outfile = options.outfile with open(outfile,'w') as out: out.write(output) else: print output #关闭游标与连接 conn.close() cur.close()
相关推荐:
MySQL中关于information_schema的详细介绍
Atas ialah kandungan terperinci MySQL数据库利用Python操作Schema方法详解. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

MySQL adalah sistem pengurusan pangkalan data relasi sumber terbuka, terutamanya digunakan untuk menyimpan dan mengambil data dengan cepat dan boleh dipercayai. Prinsip kerjanya termasuk permintaan pelanggan, resolusi pertanyaan, pelaksanaan pertanyaan dan hasil pulangan. Contoh penggunaan termasuk membuat jadual, memasukkan dan menanyakan data, dan ciri -ciri canggih seperti Operasi Join. Kesalahan umum melibatkan sintaks SQL, jenis data, dan keizinan, dan cadangan pengoptimuman termasuk penggunaan indeks, pertanyaan yang dioptimumkan, dan pembahagian jadual.

MySQL adalah sistem pengurusan pangkalan data sumber terbuka yang sesuai untuk penyimpanan data, pengurusan, pertanyaan dan keselamatan. 1. Ia menyokong pelbagai sistem operasi dan digunakan secara meluas dalam aplikasi web dan bidang lain. 2. Melalui seni bina pelanggan-pelayan dan enjin penyimpanan yang berbeza, MySQL memproses data dengan cekap. 3. Penggunaan asas termasuk membuat pangkalan data dan jadual, memasukkan, menanyakan dan mengemas kini data. 4. Penggunaan lanjutan melibatkan pertanyaan kompleks dan prosedur yang disimpan. 5. Kesilapan umum boleh disahpepijat melalui pernyataan yang dijelaskan. 6. Pengoptimuman Prestasi termasuk penggunaan indeks rasional dan pernyataan pertanyaan yang dioptimumkan.

MySQL dipilih untuk prestasi, kebolehpercayaan, kemudahan penggunaan, dan sokongan komuniti. 1.MYSQL Menyediakan fungsi penyimpanan dan pengambilan data yang cekap, menyokong pelbagai jenis data dan operasi pertanyaan lanjutan. 2. Mengamalkan seni bina pelanggan-pelayan dan enjin penyimpanan berganda untuk menyokong urus niaga dan pengoptimuman pertanyaan. 3. Mudah digunakan, menyokong pelbagai sistem operasi dan bahasa pengaturcaraan. 4. Mempunyai sokongan komuniti yang kuat dan menyediakan sumber dan penyelesaian yang kaya.

Mekanisme kunci InnoDB termasuk kunci bersama, kunci eksklusif, kunci niat, kunci rekod, kunci jurang dan kunci utama seterusnya. 1. Kunci dikongsi membolehkan urus niaga membaca data tanpa menghalang urus niaga lain dari membaca. 2. Kunci eksklusif menghalang urus niaga lain daripada membaca dan mengubah suai data. 3. Niat Kunci mengoptimumkan kecekapan kunci. 4. Rekod Rekod Kunci Kunci Rekod. 5. Gap Lock Locks Index Rakaman Gap. 6. Kunci kunci seterusnya adalah gabungan kunci rekod dan kunci jurang untuk memastikan konsistensi data.

Sebab -sebab utama prestasi pertanyaan MySQL yang lemah termasuk tidak menggunakan indeks, pemilihan pelan pelaksanaan yang salah oleh pengoptimasi pertanyaan, reka bentuk jadual yang tidak munasabah, jumlah data yang berlebihan dan persaingan kunci. 1. Tiada indeks menyebabkan pertanyaan perlahan, dan menambah indeks dapat meningkatkan prestasi dengan ketara. 2. Gunakan perintah Jelaskan untuk menganalisis pelan pertanyaan dan cari ralat pengoptimuman. 3. Membina semula struktur meja dan mengoptimumkan keadaan gabungan dapat meningkatkan masalah reka bentuk jadual. 4. Apabila jumlah data adalah besar, pembahagian dan strategi bahagian meja diterima pakai. 5. Dalam persekitaran konkurensi yang tinggi, mengoptimumkan urus niaga dan strategi mengunci dapat mengurangkan persaingan kunci.

Dalam pengoptimuman pangkalan data, strategi pengindeksan hendaklah dipilih mengikut keperluan pertanyaan: 1. Apabila pertanyaan melibatkan pelbagai lajur dan urutan syarat ditetapkan, gunakan indeks komposit; 2. Apabila pertanyaan melibatkan pelbagai lajur tetapi urutan syarat tidak ditetapkan, gunakan pelbagai indeks lajur tunggal. Indeks komposit sesuai untuk mengoptimumkan pertanyaan berbilang lajur, manakala indeks lajur tunggal sesuai untuk pertanyaan tunggal lajur.

Untuk mengoptimumkan pertanyaan perlahan MySQL, SlowQuerylog dan Performance_Schema perlu digunakan: 1. Dayakan SlowQueryLog dan tetapkan ambang untuk merakam pertanyaan perlahan; 2. Gunakan Performance_Schema untuk menganalisis butiran pelaksanaan pertanyaan, cari kesesakan prestasi dan mengoptimumkan.

MySQL dan SQL adalah kemahiran penting untuk pemaju. 1.MYSQL adalah sistem pengurusan pangkalan data sumber terbuka, dan SQL adalah bahasa standard yang digunakan untuk mengurus dan mengendalikan pangkalan data. 2.MYSQL menyokong pelbagai enjin penyimpanan melalui penyimpanan data yang cekap dan fungsi pengambilan semula, dan SQL melengkapkan operasi data yang kompleks melalui pernyataan mudah. 3. Contoh penggunaan termasuk pertanyaan asas dan pertanyaan lanjutan, seperti penapisan dan penyortiran mengikut keadaan. 4. Kesilapan umum termasuk kesilapan sintaks dan isu -isu prestasi, yang boleh dioptimumkan dengan memeriksa penyataan SQL dan menggunakan perintah menjelaskan. 5. Teknik pengoptimuman prestasi termasuk menggunakan indeks, mengelakkan pengimbasan jadual penuh, mengoptimumkan operasi menyertai dan meningkatkan kebolehbacaan kod.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod