Rumah >pembangunan bahagian belakang >Tutorial Python >python多进程快还是多线程快?

python多进程快还是多线程快?

零下一度
零下一度asal
2017-06-01 10:04:493110semak imbas

下面小编就为大家带来一篇python多进程和多线程究竟谁更快(详解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧

python多进程快还是多线程快?

python3.6

threading和multiprocessing

四核+三星250G-850-SSD

自从用多进程和多线程进行编程,一致没搞懂到底谁更快。网上很多都说python多进程更快,因为GIL(全局解释器锁)。但是我在写代码的时候,测试时间却是多线程更快,所以这到底是怎么回事?最近再做分词工作,原来的代码速度太慢,想提速,所以来探求一下有效方法(文末有代码和效果图)

这里先来一张程序的结果图,说明线程和进程谁更快

一些定义

并行是指两个或者多个事件在同一时刻发生。并发是指两个或多个事件在同一时间间隔内发生

线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一个程序的执行实例就是一个进程。

实现过程

而python里面的多线程显然得拿到GIL,执行code,最后释放GIL。所以由于GIL,多线程的时候拿不到,实际上,它是并发实现,即多个事件,在同一时间间隔内发生。

但进程有独立GIL,所以可以并行实现。因此,针对多核CPU,理论上采用多进程更能有效利用资源。

现实问题

在网上的教程里面,经常能见到python多线程的身影。比如网络爬虫的教程、端口扫描的教程。

这里拿端口扫描来说,大家可以用多进程实现下面的脚本,会发现python多进程更快。那么不就是和我们分析相悖了吗?

import sys,threading
from socket import *

host = "127.0.0.1" if len(sys.argv)==1 else sys.argv[1]
portList = [i for i in range(1,1000)]
scanList = []
lock = threading.Lock()
print('Please waiting... From ',host)


def scanPort(port):
  try:
    tcp = socket(AF_INET,SOCK_STREAM)
    tcp.connect((host,port))
  except:
    pass
  else:
    if lock.acquire():
      print('[+]port',port,'open')
      lock.release()
  finally:
    tcp.close()

for p in portList:
  t = threading.Thread(target=scanPort,args=(p,))
  scanList.append(t)
for i in range(len(portList)):
  scanList[i].start()
for i in range(len(portList)):
  scanList[i].join()

谁更快

因为python锁的问题,线程进行锁竞争、切换线程,会消耗资源。所以,大胆猜测一下:

在CPU密集型任务下,多进程更快,或者说效果更好;而IO密集型,多线程能有效提高效率。

大家看一下下面的代码:

import time
import threading
import multiprocessing

max_process = 4
max_thread = max_process

def fun(n,n2):
  #cpu密集型
  for i in range(0,n):
    for j in range(0,(int)(n*n*n*n2)):
      t = i*j

def thread_main(n2):
  thread_list = []
  for i in range(0,max_thread):
    t = threading.Thread(target=fun,args=(50,n2))
    thread_list.append(t)

  start = time.time()
  print(' [+] much thread start')
  for i in thread_list:
    i.start()
  for i in thread_list:
    i.join()
  print(' [-] much thread use ',time.time()-start,'s')

def process_main(n2):
  p = multiprocessing.Pool(max_process)
  for i in range(0,max_process):
    p.apply_async(func = fun,args=(50,n2))
  start = time.time()
  print(' [+] much process start')
  p.close()#关闭进程池
  p.join()#等待所有子进程完毕
  print(' [-] much process use ',time.time()-start,'s')

if name=='main':
  print("[++]When n=50,n2=0.1:")
  thread_main(0.1)
  process_main(0.1)
  print("[++]When n=50,n2=1:")
  thread_main(1)
  process_main(1)
  print("[++]When n=50,n2=10:")
  thread_main(10)
  process_main(10)

结果如下:

可以看出来,当对cpu使用率越来越高的时候(代码循环越多的时候),差距越来越大。验证我们猜想

CPU和IO密集型

1、CPU密集型代码(各种循环处理、计数等等)

2、IO密集型代码(文件处理、网络爬虫等)

判断方法:

1、直接看CPU占用率, 硬盘IO读写速度

2、计算较多->CPU;时间等待较多(如网络爬虫)->IO

3、请自行百度

【相关推荐】

1. Python中多进程与多线程实例(一)

2. Python中推荐使用多进程而不是多线程?分享推荐使用多进程的原因

3. Python中多进程与多线程实例(二)编程方法

4. 关于Python进程、线程、协程详细介绍

5. Python 并发编程之线程池/进程池

Atas ialah kandungan terperinci python多进程快还是多线程快?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn