


Ahli baharu telah ditambahkan pada koleksi kod pendua: menjejaki masa pelaksanaan tugasan Saderi.
Setiap tugasan Saderi sebenarnya mempunyai dua masa "pelaksanaan" yang berbeza:
- Masa pelaksanaan sebenar: Masa yang diambil untuk kod berjalan.
- "Masa siap": Termasuk masa yang dihabiskan menunggu dalam baris gilir untuk proses pekerja yang tersedia.
Kedua-duanya penting kerana matlamat utama kami adalah untuk mengetahui bila tugasan selesai.
Selepas mencetuskan tugas, kita perlu tahu bila tugas itu selesai dan bila kita boleh mengharapkan hasilnya. Ia seperti anggaran projek. Apa yang pengurus benar-benar ingin tahu ialah bila projek itu akan siap, bukannya ia akan siap dalam seminggu tetapi tiada siapa yang akan mempunyai masa untuk melakukannya dalam tempoh enam bulan akan datang.
Gunakan Isyarat Saderi
Kami boleh menggunakan isyarat Saderi untuk masa tugasan.
Petua 1: Semua parameter isyarat Saderi ialah parameter kata kunci. Ini bermakna kita hanya boleh menyenaraikan hujah kata kunci yang kita minati dan membungkus selebihnya ke dalam **kwargs
. Ini adalah reka bentuk yang hebat! Semua isyarat harus dilakukan dengan cara ini!
Petua 2: Kita boleh menyimpan masa mula dan tamat pelaksanaan dalam sifat "pengepala" objek tugasan.
Menyertai tugas
Apabila tugasan Saderi memasuki baris gilir, rekod masa semasa:
from celery import signals from dateutil.parser import isoparse from datetime import datetime, timezone @signals.before_task_publish.connect def before_task_publish(*, headers: dict, **kwargs): raw_eta = headers.get("eta") publish_time = isoparse(raw_eta) if raw_eta else datetime.now(tz=timezone.utc) headers["__publish_time"] = publish_time.isoformat()
Pelaksanaan tugas bermula
Apabila proses pekerja menerima tugas, rekod masa semasa:
from celery import signals from datetime import datetime, timezone @signals.task_prerun.connect def task_prerun(*, task: Task, **kwargs): setattr(task.request, "__prerun_time", datetime.now(tz=timezone.utc).isoformat())
Pelaksanaan tugas telah tamat
Apabila tugasan selesai, kirakan masa pelaksanaan dan simpannya di suatu tempat, seperti StatsD atau alat pemantauan lain.
StatsD ialah tindanan teknologi standard industri untuk memantau aplikasi dan menginstrumen sebarang perisian untuk menyediakan metrik tersuai.
- Netdata: Pengenalan StatsD [1]
from celery import signals, Task from dateutil.parser import isoparse from datetime import datetime, timezone, timedelta def to_milliseconds(td: timedelta) -> int: return int(td.total_seconds() * 1000) @signals.task_postrun.connect def task_postrun(*, task: Task, **kwargs): now = datetime.now(tz=timezone.utc) publish_time = isoparse(getattr(task.request, "__publish_time", "")) prerun_time = isoparse(getattr(task.request, "__prerun_time", "")) exec_time = now - prerun_time if prerun_time else timedelta(0) waiting_time = prerun_time - publish_time if publish_time and prerun_time else timedelta(0) waiting_and_exec_time = now - publish_time if publish_time else timedelta(0) stats = { "exec_time_ms": to_milliseconds(exec_time), "waiting_time_ms": to_milliseconds(waiting_time), "waiting_and_exec_time_ms": to_milliseconds(waiting_and_exec_time), } # TODO: 将统计数据发送到 StatsD 或其他监控工具 statsd.timing(f"celery.task.exec_time_ms", stats["exec_time_ms"], tags=[f"task:{task.name}"]) # ... 发送其他统计数据 ...
Ciri tambahan: Tetapkan amaran masa pelaksanaan yang lama
Adalah mungkin untuk menambah ambang berkod keras dalam fungsi di atas:
if exec_time > timedelta(hours=1): logger.error(f"任务 {task.name} 执行时间过长: {exec_time}。请检查!")
Sebagai alternatif, seseorang boleh menetapkan ambang atau ambang berbilang peringkat berdasarkan definisi tugas, atau apa sahaja yang boleh dinyatakan dalam kod.
Atas ialah kandungan terperinci Bagaimanakah cara saya mengukur masa pelaksanaan tugasan Saderi?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Dreamweaver Mac版
Alat pembangunan web visual

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.