cari
Rumahpembangunan bahagian belakangTutorial PythonBagaimana untuk Melaksanakan Produk Cartesian dengan Cekap (CROSS JOIN) dengan Pandas DataFrames?

How to Efficiently Perform a Cartesian Product (CROSS JOIN) with Pandas DataFrames?

Produk Cartesian Berprestasi (CROSS JOIN) dengan Panda

Dalam bidang manipulasi data, produk cartesian, atau CROSS JOIN, ialah operasi berharga yang menggabungkan dua atau lebih banyak DataFrames berdasarkan satu-ke-satu atau banyak-ke-banyak. Operasi ini mengembangkan set data asal dengan mencipta baris baharu untuk semua kemungkinan gabungan elemen daripada DataFrames input.

Pernyataan Masalah

Diberikan dua DataFrames dengan indeks unik:

left = pd.DataFrame({'col1': ['A', 'B', 'C'], 'col2': [1, 2, 3]})
right = pd.DataFrame({'col1': ['X', 'Y', 'Z'], 'col2': [20, 30, 50]})

Matlamatnya adalah untuk mencari kaedah yang paling cekap untuk mengira hasil cartesian DataFrames ini, menghasilkan perkara berikut keluaran:

  col1_x  col2_x col1_y  col2_y
0      A       1      X      20
1      A       1      Y      30
2      A       1      Z      50
3      B       2      X      20
4      B       2      Y      30
5      B       2      Z      50
6      C       3      X      20
7      C       3      Y      30
8      C       3      Z      50

Penyelesaian Optimum

Kaedah 1: Lajur Kunci Sementara

Satu pendekatan adalah untuk menetapkan sementara lajur "kunci" dengan nilai sepunya kepada kedua-dua DataFrames:

left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1)

Kaedah ini menggunakan gabungan untuk melaksanakan ramai-ke-banyak SERTAI pada lajur "kunci".

Kaedah 2: NumPy Cartesian Product

Untuk DataFrames yang lebih besar, penyelesaian yang berprestasi adalah dengan menggunakan produk cartesian NumPy pelaksanaan:

def cartesian_product(*arrays):
    la = len(arrays)
    dtype = np.result_type(*arrays)
    arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype)
    for i, a in enumerate(np.ix_(*arrays)):
        arr[...,i] = a
    return arr.reshape(-1, la)  

Fungsi ini menjana semua kemungkinan gabungan elemen daripada tatasusunan input.

Kaedah 3: Generalized CROSS JOIN

Penyelesaian umum berfungsi pada DataFrames dengan indeks bukan unik atau bercampur:

def cartesian_product_generalized(left, right):
    la, lb = len(left), len(right)
    idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb])
    return pd.DataFrame(
        np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))

Kaedah ini mengindeks semula DataFrames berdasarkan produk cartesian mereka indeks.

Penyelesaian Dipertingkat

Kaedah 4: SERTAI CROSS Dipermudah

Penyelesaian dipermudahkan lagi mungkin untuk dua DataFrames dengan djenis bukan campuran:

def cartesian_product_simplified(left, right):
    la, lb = len(left), len(right)
    ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb])

    return pd.DataFrame(
        np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))

Kaedah ini menggunakan penyiaran dan ogrid NumPy untuk menjana produk cartesian indeks DataFrames.

Perbandingan Prestasi

Prestasi penyelesaian ini berbeza-beza berdasarkan saiz dan kerumitan set data. Penanda aras berikut memberikan perbandingan relatif masa pelaksanaannya:

# ... (Benchmarking code not included here)

Hasilnya menunjukkan bahawa kaedah cartesian_product berasaskan NumPy mengatasi penyelesaian lain untuk kebanyakan kes, terutamanya apabila saiz DataFrames meningkat.

Kesimpulan

Dengan memanfaatkan teknik yang dibentangkan, penganalisis data boleh melakukan dengan cekap produk cartesian pada DataFrames, operasi asas untuk manipulasi dan pengembangan data. Kaedah ini membolehkan prestasi optimum walaupun pada set data yang besar atau kompleks, membolehkan penerokaan dan analisis data yang cekap.

Atas ialah kandungan terperinci Bagaimana untuk Melaksanakan Produk Cartesian dengan Cekap (CROSS JOIN) dengan Pandas DataFrames?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Bagaimana saya menggunakan sup yang indah untuk menghuraikan html?Bagaimana saya menggunakan sup yang indah untuk menghuraikan html?Mar 10, 2025 pm 06:54 PM

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Bagaimana untuk menyelesaikan masalah kebenaran yang dihadapi semasa melihat versi Python di Terminal Linux?Bagaimana untuk menyelesaikan masalah kebenaran yang dihadapi semasa melihat versi Python di Terminal Linux?Apr 01, 2025 pm 05:09 PM

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Modul Matematik dalam Python: StatistikModul Matematik dalam Python: StatistikMar 09, 2025 am 11:40 AM

Modul Statistik Python menyediakan keupayaan analisis statistik data yang kuat untuk membantu kami dengan cepat memahami ciri -ciri keseluruhan data, seperti biostatistik dan analisis perniagaan. Daripada melihat titik data satu demi satu, cuma melihat statistik seperti min atau varians untuk menemui trend dan ciri dalam data asal yang mungkin diabaikan, dan membandingkan dataset besar dengan lebih mudah dan berkesan. Tutorial ini akan menjelaskan cara mengira min dan mengukur tahap penyebaran dataset. Kecuali dinyatakan sebaliknya, semua fungsi dalam modul ini menyokong pengiraan fungsi min () dan bukan hanya menjumlahkan purata. Nombor titik terapung juga boleh digunakan. Import secara rawak Statistik import dari fracti

Serialization dan deserialisasi objek python: Bahagian 1Serialization dan deserialisasi objek python: Bahagian 1Mar 08, 2025 am 09:39 AM

Serialization dan deserialization objek Python adalah aspek utama dari mana-mana program bukan remeh. Jika anda menyimpan sesuatu ke fail python, anda melakukan siri objek dan deserialization jika anda membaca fail konfigurasi, atau jika anda menjawab permintaan HTTP. Dalam erti kata, siri dan deserialization adalah perkara yang paling membosankan di dunia. Siapa yang peduli dengan semua format dan protokol ini? Anda mahu berterusan atau mengalirkan beberapa objek python dan mengambilnya sepenuhnya pada masa yang akan datang. Ini adalah cara yang baik untuk melihat dunia pada tahap konseptual. Walau bagaimanapun, pada tahap praktikal, skim siri, format atau protokol yang anda pilih boleh menentukan kelajuan, keselamatan, kebebasan status penyelenggaraan, dan aspek lain dari program

Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch?Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch?Mar 10, 2025 pm 06:52 PM

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Mengikis halaman web dalam python dengan sup yang indah: carian dan pengubahsuaian domMengikis halaman web dalam python dengan sup yang indah: carian dan pengubahsuaian domMar 08, 2025 am 10:36 AM

Tutorial ini dibina pada pengenalan sebelumnya kepada sup yang indah, memberi tumpuan kepada manipulasi DOM di luar navigasi pokok mudah. Kami akan meneroka kaedah dan teknik carian yang cekap untuk mengubahsuai struktur HTML. Satu kaedah carian dom biasa ialah Ex

Apakah beberapa perpustakaan Python yang popular dan kegunaan mereka?Apakah beberapa perpustakaan Python yang popular dan kegunaan mereka?Mar 21, 2025 pm 06:46 PM

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h

Bagaimana untuk membuat antara muka baris arahan (CLI) dengan python?Bagaimana untuk membuat antara muka baris arahan (CLI) dengan python?Mar 10, 2025 pm 06:48 PM

Artikel ini membimbing pemaju Python mengenai bangunan baris baris komando (CLI). Butirannya menggunakan perpustakaan seperti Typer, Klik, dan ArgParse, menekankan pengendalian input/output, dan mempromosikan corak reka bentuk mesra pengguna untuk kebolehgunaan CLI yang lebih baik.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
2 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
2 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
2 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

SecLists

SecLists

SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.