


Rujukan Laluan dalam Aplikasi Flask: Mutlak vs Relatif
Apabila bekerja dengan laluan relatif dalam aplikasi Flask, adalah penting untuk memahami perbezaan antara lokasi kod dan direktori kerja. Pelan tindakan kelalang, yang wujud dalam direktori selari dengan direktori data, boleh menghadapi masalah jika laluan ke data tidak dinyatakan dalam format mutlak.
Pertimbangkan contoh berikut:
nltk.data.path.append('../nltk_data/')
Laluan ini tidak akan berfungsi seperti yang dimaksudkan kerana Python mentafsir semua laluan relatif sebagai relatif kepada direktori kerja semasa, yang mungkin berbeza dari tempat kod tersebut berada. Oleh itu, laluan harus ditentukan secara mutlak:
nltk.data.path.append('/home/username/myapp/app/nltk_data/')
Sebagai alternatif, atribut root_path Flask boleh digunakan untuk mendapatkan laluan mutlak ke direktori pakej untuk aplikasi atau pelan tindakan. Atribut ini membolehkan anda menentukan laluan data secara relatif kepada direktori pakej, seperti yang dilihat dalam contoh berikut:
resource_path = os.path.join(app.root_path, 'nltk_data')
Perlu diperhatikan bahawa menyediakan laluan data sekali semasa permulaan aplikasi biasanya lebih cekap daripada menambahkan ia dalam setiap pandangan. Tambahan pula, pakej tertentu, seperti NLTK, menyediakan mekanisme khusus untuk menetapkan laluan data semasa persediaan aplikasi. Memahami prinsip ini memastikan bahawa laluan data dirujuk dengan betul dalam aplikasi Flask, tanpa mengira direktori kerja semasa.
Atas ialah kandungan terperinci Laluan Mutlak lwn. Relatif dalam Kelalang: Bagaimanakah Saya Merujuk Data dengan Betul?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Modul Statistik Python menyediakan keupayaan analisis statistik data yang kuat untuk membantu kami dengan cepat memahami ciri -ciri keseluruhan data, seperti biostatistik dan analisis perniagaan. Daripada melihat titik data satu demi satu, cuma melihat statistik seperti min atau varians untuk menemui trend dan ciri dalam data asal yang mungkin diabaikan, dan membandingkan dataset besar dengan lebih mudah dan berkesan. Tutorial ini akan menjelaskan cara mengira min dan mengukur tahap penyebaran dataset. Kecuali dinyatakan sebaliknya, semua fungsi dalam modul ini menyokong pengiraan fungsi min () dan bukan hanya menjumlahkan purata. Nombor titik terapung juga boleh digunakan. Import secara rawak Statistik import dari fracti

Serialization dan deserialization objek Python adalah aspek utama dari mana-mana program bukan remeh. Jika anda menyimpan sesuatu ke fail python, anda melakukan siri objek dan deserialization jika anda membaca fail konfigurasi, atau jika anda menjawab permintaan HTTP. Dalam erti kata, siri dan deserialization adalah perkara yang paling membosankan di dunia. Siapa yang peduli dengan semua format dan protokol ini? Anda mahu berterusan atau mengalirkan beberapa objek python dan mengambilnya sepenuhnya pada masa yang akan datang. Ini adalah cara yang baik untuk melihat dunia pada tahap konseptual. Walau bagaimanapun, pada tahap praktikal, skim siri, format atau protokol yang anda pilih boleh menentukan kelajuan, keselamatan, kebebasan status penyelenggaraan, dan aspek lain dari program

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h

Tutorial ini dibina pada pengenalan sebelumnya kepada sup yang indah, memberi tumpuan kepada manipulasi DOM di luar navigasi pokok mudah. Kami akan meneroka kaedah dan teknik carian yang cekap untuk mengubahsuai struktur HTML. Satu kaedah carian dom biasa ialah Ex

Artikel ini membimbing pemaju Python mengenai bangunan baris baris komando (CLI). Butirannya menggunakan perpustakaan seperti Typer, Klik, dan ArgParse, menekankan pengendalian input/output, dan mempromosikan corak reka bentuk mesra pengguna untuk kebolehgunaan CLI yang lebih baik.

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini
