


Membina Bingkai Data Panda daripada Kamus Bersarang
Apabila bekerja dengan kamus bersarang, mungkin sukar untuk menukar data menjadi DataFrame panda dalam cara yang selaras dengan struktur yang dikehendaki. Khususnya, mengekstrak data daripada tahap terdalam kamus sebagai siri boleh menyusahkan.
Andaikan anda mempunyai kamus berstruktur seperti berikut:
- Tahap 1: UserId (Integer Panjang)
- Tahap 2: Kategori (String)
- Tahap 3: Atribut Pelbagai (terapung, int, dsb.)
Matlamatnya adalah untuk membina DataFrame dengan indeks hierarki menggunakan data dari peringkat ketiga kamus.
Menggunakan MultiIndex
Panda MultiIndex ialah cara mudah untuk mewakili data hierarki dalam DataFrame. Untuk mencipta MultiIndex daripada kamus bersarang, bentuk semula kekunci menjadi tupel yang sepadan dengan nilai berbilang indeks.
user_dict = {12: {'Category 1': {'att_1': 1, 'att_2': 'whatever'}, 'Category 2': {'att_1': 23, 'att_2': 'another'}}, 15: {'Category 1': {'att_1': 10, 'att_2': 'foo'}, 'Category 2': {'att_1': 30, 'att_2': 'bar'}}} df = pd.DataFrame.from_dict({(i,j): user_dict[i][j] for i in user_dict.keys() for j in user_dict[i].keys()}, orient='index')
Pendekatan ini akan mencipta DataFrame dengan indeks hierarki, di mana tahap pertama mengandungi UserIds dan tahap kedua mengandungi Kategori. Data dari peringkat ketiga kini disusun mengikut siri yang boleh diakses menggunakan kedua-dua UserId dan Kategori sebagai indeks.
Pendekatan Alternatif menggunakan Concatenation
Cara lain untuk membina DataFrame ialah dengan menggabungkan bingkai data komponen.
user_ids = [] frames = [] for user_id, d in user_dict.iteritems(): user_ids.append(user_id) frames.append(pd.DataFrame.from_dict(d, orient='index')) df = pd.concat(frames, keys=user_ids)
Kaedah ini berulang ke atas kamus, mencipta DataFrame untuk setiap user_id dan gabungan kategori. Bingkai data yang terhasil kemudiannya disatukan secara menegak dan dicantumkan menggunakan kekunci sebagai indeks hierarki.
Atas ialah kandungan terperinci Bagaimana untuk Membina DataFrame Pandas dengan Cekap daripada Kamus Bersarang dengan Indeks Hierarki?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Dreamweaver Mac版
Alat pembangunan web visual

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)