


Bagaimana untuk Mengoptimumkan Panda `read_csv` dengan Pilihan `dtype` dan `low_memory`?
Panda read_csv: low_memory and dtype options
Apabila menggunakan pd.read_csv('somefile.csv'), anda mungkin menghadapi DtypeWarning menunjukkan bahawa lajur mempunyai jenis campuran. Menentukan pilihan dtype boleh menghalang ralat ini dan meningkatkan prestasi.
Memahami Pilihan low_memory
Pilihan low_memory yang ditamatkan sebenarnya tidak menjejaskan tingkah laku. Walau bagaimanapun, ia berkaitan dengan pilihan dtype kerana meneka dtype untuk setiap lajur boleh menjadi intensif memori.
Menjaga Terhadap Ketakpadanan Data
Jika baris terakhir masuk fail anda mengandungi data yang tidak dijangka, menyatakan dtypes boleh menyebabkan proses pemuatan gagal. Contohnya, jika lajur yang dinyatakan sebagai integer mengandungi nilai rentetan seperti "foobar", pemuatan akan terputus.
Menentukan dtypes
Untuk mengelakkan ralat sedemikian, secara eksplisit tentukan dtypes apabila membaca fail CSV. Menggunakan pilihan dtype memberikan jenis data yang betul kepada setiap lajur, membolehkan penghuraian yang cekap dan mengurangkan penggunaan memori.
Dtypes yang tersedia
Panda menyokong pelbagai jenis d, termasuk :
- Jenis numpy: float, int, bool, timedelta64[ns], datetime64[ns]
-
Sambungan Pandas:
- datetime64 [ns,
] (cap masa sedar zon waktu) - kategori (enum)
- tempoh[] (tempoh masa)
- Jarang (data dengan lubang)
- Selang (pengindeksan)
- integer boleh null (Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64)
- boolean (nullable bool)
- datetime64 [ns,
Gotchas
- Menetapkan dtype=objek menyenyapkan amaran tetapi tidak tingkatkan kecekapan ingatan.
- Tetapan dtype=unicode tidak mempunyai kesan kerana numpy mewakili unicode sebagai objek.
- Penukar boleh digunakan untuk mengendalikan data yang tidak dijangka, tetapi ia tidak cekap disebabkan oleh proses tunggal Pandas alam semula jadi.
Atas ialah kandungan terperinci Bagaimana untuk Mengoptimumkan Panda `read_csv` dengan Pilihan `dtype` dan `low_memory`?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Memuatkan Fail Pickle di Python 3.6 Kesalahan Laporan Alam Sekitar: ModulenotFoundError: Nomodulenamed ...

Bagaimana untuk menyelesaikan masalah segmentasi kata Jieba dalam analisis komen tempat yang indah? Semasa kami mengadakan komen dan analisis tempat yang indah, kami sering menggunakan alat segmentasi perkataan jieba untuk memproses teks ...


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

Dreamweaver Mac版
Alat pembangunan web visual

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan