


Apakah Perintah Pelaksanaan Klausa GROUP BY, HAVING, dan WHERE dalam SQL Server?
Urutan Pelaksanaan Kumpulan Mengikut, Mempunyai, dan Klausa Dimana dalam Pelayan SQL
Dalam pengaturcaraan SQL, memahami urutan pelaksanaan pelbagai klausa ialah penting untuk pengoptimuman pertanyaan yang cekap. Artikel ini akan menyelidiki urutan khusus klausa GROUP BY, HAVING, dan WHERE dalam SQL Server.
Jujukan Pelaksanaan:
SQL Server melaksanakan arahan berikut dalam tertib berikut:
- DARI dan SERTAI: Langkah ini mengenal pasti dan menggabungkan data daripada jadual yang ditentukan, berdasarkan syarat gabungan (jika ada).
- WHERE: Klausa WHERE menapis data yang telah dipilih dalam langkah 1, mengalih keluar mana-mana baris yang tidak memenuhi kriteria yang ditentukan.
- KUMPULAN OLEH: Baris daripada langkah sebelumnya dikumpulkan berdasarkan lajur yang ditentukan dalam klausa GROUP BY.
- HAVING: Klausa HAVING menggunakan penapis pada kumpulan yang dibuat dalam langkah 3, mengalih keluar mana-mana kumpulan yang tidak memenuhi kriteria yang ditentukan .
- PESANAN OLEH: Klausa ORDER BY menyusun baris atau kumpulan yang tinggal dalam susunan yang ditentukan.
- HAD: Klausa LIMIT mengehadkan keputusan kepada bilangan baris atau kumpulan tertentu.
Contoh:
Pertimbangkan pertanyaan berikut:
SELECT SUM(salary) AS total_salary FROM employees WHERE department = 'HR' GROUP BY department HAVING SUM(salary) > 50000 ORDER BY total_salary DESC
Dalam pertanyaan ini , data dipilih daripada jadual "pekerja" (langkah 1). Klausa WHERE menapis data untuk memasukkan hanya pekerja dalam jabatan "HR" (langkah 2). Klausa GROUP BY menggabungkan pekerja dari jabatan yang sama ke dalam kumpulan (langkah 3). Klausa HAVING mengeluarkan kumpulan dengan jumlah gaji kurang daripada 50,000 (langkah 4). Klausa ORDER BY menyusun kumpulan dalam susunan menurun jumlah gaji (langkah 5).
Atas ialah kandungan terperinci Apakah Perintah Pelaksanaan Klausa GROUP BY, HAVING, dan WHERE dalam SQL Server?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Dalam pengoptimuman pangkalan data, strategi pengindeksan hendaklah dipilih mengikut keperluan pertanyaan: 1. Apabila pertanyaan melibatkan pelbagai lajur dan urutan syarat ditetapkan, gunakan indeks komposit; 2. Apabila pertanyaan melibatkan pelbagai lajur tetapi urutan syarat tidak ditetapkan, gunakan pelbagai indeks lajur tunggal. Indeks komposit sesuai untuk mengoptimumkan pertanyaan berbilang lajur, manakala indeks lajur tunggal sesuai untuk pertanyaan tunggal lajur.

Untuk mengoptimumkan pertanyaan perlahan MySQL, SlowQuerylog dan Performance_Schema perlu digunakan: 1. Dayakan SlowQueryLog dan tetapkan ambang untuk merakam pertanyaan perlahan; 2. Gunakan Performance_Schema untuk menganalisis butiran pelaksanaan pertanyaan, cari kesesakan prestasi dan mengoptimumkan.

MySQL dan SQL adalah kemahiran penting untuk pemaju. 1.MYSQL adalah sistem pengurusan pangkalan data sumber terbuka, dan SQL adalah bahasa standard yang digunakan untuk mengurus dan mengendalikan pangkalan data. 2.MYSQL menyokong pelbagai enjin penyimpanan melalui penyimpanan data yang cekap dan fungsi pengambilan semula, dan SQL melengkapkan operasi data yang kompleks melalui pernyataan mudah. 3. Contoh penggunaan termasuk pertanyaan asas dan pertanyaan lanjutan, seperti penapisan dan penyortiran mengikut keadaan. 4. Kesilapan umum termasuk kesilapan sintaks dan isu -isu prestasi, yang boleh dioptimumkan dengan memeriksa penyataan SQL dan menggunakan perintah menjelaskan. 5. Teknik pengoptimuman prestasi termasuk menggunakan indeks, mengelakkan pengimbasan jadual penuh, mengoptimumkan operasi menyertai dan meningkatkan kebolehbacaan kod.

MySQL Asynchronous Master-Slave Replikasi membolehkan penyegerakan data melalui binlog, meningkatkan prestasi baca dan ketersediaan yang tinggi. 1) Rekod pelayan induk berubah kepada binlog; 2) Pelayan hamba membaca binlog melalui benang I/O; 3) Server SQL Thread menggunakan binlog untuk menyegerakkan data.

MySQL adalah sistem pengurusan pangkalan data sumber terbuka. 1) Buat Pangkalan Data dan Jadual: Gunakan perintah Createdatabase dan Createtable. 2) Operasi Asas: Masukkan, Kemas kini, Padam dan Pilih. 3) Operasi lanjutan: Sertai, subquery dan pemprosesan transaksi. 4) Kemahiran Debugging: Semak sintaks, jenis data dan keizinan. 5) Cadangan Pengoptimuman: Gunakan indeks, elakkan pilih* dan gunakan transaksi.

Pemasangan dan operasi asas MySQL termasuk: 1. Muat turun dan pasang MySQL, tetapkan kata laluan pengguna root; 2. Gunakan arahan SQL untuk membuat pangkalan data dan jadual, seperti CreateTatabase dan Createtable; 3. Melaksanakan operasi CRUD, gunakan memasukkan, pilih, kemas kini, padamkan arahan; 4. Buat indeks dan prosedur tersimpan untuk mengoptimumkan prestasi dan melaksanakan logik kompleks. Dengan langkah -langkah ini, anda boleh membina dan mengurus pangkalan data MySQL dari awal.

Innodbbufferpool meningkatkan prestasi pangkalan data MySQL dengan memuatkan data dan halaman indeks ke dalam ingatan. 1) Halaman data dimuatkan ke dalam bufferpool untuk mengurangkan cakera I/O. 2) Halaman kotor ditandakan dan disegarkan ke cakera secara teratur. 3) Pengurusan Data Pengurusan Algoritma LRU Penghapusan. 4) Mekanisme pembacaan memuatkan halaman data yang mungkin terlebih dahulu.

MySQL sesuai untuk pemula kerana mudah dipasang, kuat dan mudah untuk menguruskan data. 1. Pemasangan dan konfigurasi mudah, sesuai untuk pelbagai sistem operasi. 2. Menyokong operasi asas seperti membuat pangkalan data dan jadual, memasukkan, menanyakan, mengemas kini dan memadam data. 3. Menyediakan fungsi lanjutan seperti menyertai operasi dan subqueries. 4. Prestasi boleh ditingkatkan melalui pengindeksan, pengoptimuman pertanyaan dan pembahagian jadual. 5. Sokongan sokongan, pemulihan dan langkah keselamatan untuk memastikan keselamatan data dan konsistensi.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa