


Pemadanan Rentetan yang Cekap dalam Apache Spark untuk Pengesahan Teks yang Diekstrak
Alat pengecaman aksara optik (OCR) sering menimbulkan ralat semasa mengekstrak teks daripada imej. Untuk memadankan teks yang diekstrak ini dengan berkesan dengan set data rujukan, algoritma yang cekap dalam Spark diperlukan.
Memandangkan cabaran yang dihadapi dalam pengekstrakan OCR, seperti penggantian aksara, peninggalan emoji dan penyingkiran ruang putih, pendekatan yang komprehensif adalah diperlukan. Memandangkan kekuatan Spark, gabungan pengubah pembelajaran mesin boleh dimanfaatkan untuk mencapai penyelesaian yang cekap.
Pendekatan Saluran Paip
Saluran paip boleh dibina untuk melaksanakan langkah berikut:
- Tokenisasi: Menggunakan RegexTokenizer, teks input dibahagikan kepada token dengan panjang minimum, mengambil kira penggantian aksara seperti "I" dan "|".
- N-Grams: NGram mengekstrak jujukan n-gram token untuk menangkap potensi peninggalan simbol.
- Vectorization: Untuk memudahkan pengukuran persamaan yang cekap, HashingTF atau CountVectorizer menukar n -gram menjadi vektor berangka.
- Pencincangan Sensitif Tempatan (LSH): Untuk menganggarkan persamaan kosinus antara vektor, MinHashLSH menggunakan pencincangan sensitif lokaliti.
Contoh Pelaksanaan
<code class="scala">import org.apache.spark.ml.feature.{RegexTokenizer, NGram, HashingTF, MinHashLSH, MinHashLSHModel} // Input text val query = Seq("Hello there 7l | real|y like Spark!").toDF("text") // Reference data val db = Seq( "Hello there ?! I really like Spark ❤️!", "Can anyone suggest an efficient algorithm" ).toDF("text") // Create pipeline val pipeline = new Pipeline().setStages(Array( new RegexTokenizer().setPattern("").setInputCol("text").setMinTokenLength(1).setOutputCol("tokens"), new NGram().setN(3).setInputCol("tokens").setOutputCol("ngrams"), new HashingTF().setInputCol("ngrams").setOutputCol("vectors"), new MinHashLSH().setInputCol("vectors").setOutputCol("lsh") )) // Fit on reference data val model = pipeline.fit(db) // Transform both input text and reference data val db_hashed = model.transform(db) val query_hashed = model.transform(query) // Approximate similarity join model.stages.last.asInstanceOf[MinHashLSHModel] .approxSimilarityJoin(db_hashed, query_hashed, 0.75).show</code>
Pendekatan ini berkesan menangani cabaran pengekstrakan teks OCR dan menyediakan cara yang cekap untuk memadankan teks yang diekstrak dengan set data yang besar dalam Spark.
Atas ialah kandungan terperinci Bagaimanakah Apache Spark boleh digunakan untuk pemadanan rentetan yang cekap dan pengesahan teks yang diekstrak daripada imej menggunakan OCR?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Memuatkan Fail Pickle di Python 3.6 Kesalahan Laporan Alam Sekitar: ModulenotFoundError: Nomodulenamed ...


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

Dreamweaver Mac版
Alat pembangunan web visual