Rumah >pembangunan bahagian belakang >Tutorial Python >Bagaimana untuk Mencegah Cut-off Legend dalam Matplotlib dan Mengekalkan Keterlihatan Data?

Bagaimana untuk Mencegah Cut-off Legend dalam Matplotlib dan Mengekalkan Keterlihatan Data?

Barbara Streisand
Barbara Streisandasal
2024-10-18 12:20:03480semak imbas

How to Prevent Cut-off Legend in Matplotlib and Maintain Data Visibility?

Addressing Cut-off Legend in Matplotlib by Resizing the Figure Box

In Matplotlib, moving the legend outside the plot axis often results in its cutoff by the figure box. While shrinking the axis has been suggested as a solution, it diminishes data visibility, especially when presenting complex plots with numerous legend entries.

A more effective approach, as highlighted in Benjamin Root's response on the Matplotlib mailing list, involves modifying the savefig call to incorporate the legend as an extra artist:

fig.savefig('samplefigure', bbox_extra_artists=(lgd,), bbox_inches='tight')

This method, similar to using tight_layout, enables savefig to consider the legend when calculating the figure box size.

The following enhanced code sample demonstrates the solution:

import matplotlib.pyplot as plt
import numpy as np

plt.gcf().clear()
x = np.arange(-2*np.pi, 2*np.pi, 0.1)
fig = plt.figure(1)
ax = fig.add_subplot(111)
ax.plot(x, np.sin(x), label='Sine')
ax.plot(x, np.cos(x), label='Cosine')
ax.plot(x, np.arctan(x), label='Inverse tan')
handles, labels = ax.get_legend_handles_labels()
lgd = ax.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5,-0.1))
text = ax.text(-0.2,1.05, "Aribitrary text", transform=ax.transAxes)
ax.set_title("Trigonometry")
ax.grid('on')
fig.savefig('samplefigure', bbox_extra_artists=(lgd,text), bbox_inches='tight')

This now dynamically adjusts the figure box size to accommodate the legend, preventing its cutoff while maintaining data visibility.

Atas ialah kandungan terperinci Bagaimana untuk Mencegah Cut-off Legend dalam Matplotlib dan Mengekalkan Keterlihatan Data?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn