Anda mungkin pernah mendengar tentang keluaran terbaru Flama 1.7, yang membawa beberapa ciri baharu yang menarik untuk membantu anda dengan pembangunan dan pengeluaran API ML anda. Siaran ini dikhaskan dengan tepat kepada salah satu sorotan utama keluaran itu: Sokongan untuk Pengesahan JWT. Tetapi, sebelum kami menyelami butiran dengan contoh langsung, kami mengesyorkan anda untuk mengingati sumber berikut (dan, biasakan diri dengannya jika anda belum melakukannya):
- Dokumentasi rasmi Flama: Dokumentasi Flama
- Pasca memperkenalkan Flama untuk API ML: Pengenalan kepada Flama untuk API Pembelajaran Mesin Teguh
Sekarang, mari kita mulakan dengan ciri baharu dan lihat cara anda boleh menjamin titik akhir API anda dengan pengesahan berasaskan token atas pengepala atau kuki.
Jadual kandungan
Siaran ini berstruktur seperti berikut:
- Apakah itu JSON Web Token (JWT)?
-
Pengesahan JWT dengan Flama
- Sediakan persekitaran pembangunan
- Aplikasi asas
- Komponen Flama JWT
- Titik akhir yang dilindungi
- Menjalankan aplikasi
- Titik akhir log masuk
- Kesimpulan
- Sokong kerja kami
- Rujukan
- Mengenai pengarang
Apakah Token Web JSON?
Jika anda sudah biasa dengan konsep JSON Web Token (JWT) dan cara ia berfungsi, jangan ragu untuk melangkau bahagian ini dan terus ke Melaksanakan Pengesahan JWT dengan Flama. Jika tidak, kami akan cuba memberikan anda penjelasan ringkas tentang apa itu JWT dan sebab ia sangat berguna untuk tujuan kebenaran.
Pengenalan ringkas
Kita boleh mulakan dengan definisi rasmi yang diberikan dalam dokumen RFC 7519:
JSON Web Token (JWT) ialah cara yang padat, selamat URL untuk mewakili
tuntutan untuk dipindahkan antara dua pihak. Tuntutan dalam JWT
dikodkan sebagai objek JSON yang digunakan sebagai muatan JSON
Struktur Tandatangan Web (JWS) atau sebagai teks biasa Web JSON
Struktur Penyulitan (JWE), membolehkan tuntutan dibuat secara digital
ditandatangani atau dilindungi integriti dengan Kod Pengesahan Mesej
(MAC) dan/atau disulitkan.
Jadi, secara ringkas, JWT ialah standard terbuka yang mentakrifkan cara untuk menghantar maklumat antara dua pihak dalam bentuk objek JSON. Maklumat yang dihantar ditandatangani secara digital untuk memastikan integriti dan ketulenannya. Inilah sebabnya mengapa salah satu kes penggunaan utama JWT adalah untuk tujuan kebenaran.
Aliran pengesahan berasaskan JWT prototaip akan kelihatan seperti ini:
- Seorang pengguna log masuk ke sistem dan menerima token JWT.
- Pengguna menghantar token ini dengan setiap permintaan berikutnya kepada pelayan.
- Pelayan mengesahkan token dan memberikan akses kepada sumber yang diminta jika token itu sah.
- Jika token tidak sah, pelayan menafikan akses kepada sumber.
Walau bagaimanapun, token JWT bukan sahaja berguna untuk mengenal pasti pengguna, tetapi ia juga boleh digunakan untuk berkongsi maklumat antara perkhidmatan yang berbeza dengan cara yang selamat melalui muatan token. Selain itu, memandangkan tandatangan token dikira menggunakan pengepala dan muatan, penerima boleh mengesahkan integriti token dan memastikan ia tidak diubah semasa transit.
Struktur JWT
JWT diwakili sebagai jujukan bahagian selamat URL yang dipisahkan dengan titik (.), dengan setiap bahagian mengandungi objek JSON yang dikodkan base64url. Bilangan bahagian dalam JWT boleh berbeza-beza bergantung pada perwakilan yang digunakan, sama ada JWS (Tandatangan Web JSON) RFC-7515 atau JWE (Penyulitan Web JSON) RFC-7516.
Setakat ini, kita boleh menganggap kita akan menggunakan JWS, yang merupakan perwakilan paling biasa untuk token JWT. Dalam kes ini, token JWT terdiri daripada tiga bahagian:
- Pengepala: Mengandungi metadata tentang token dan operasi kriptografi yang digunakan padanya.
- Muat bayar: Mengandungi tuntutan (maklumat) yang dibawa oleh token.
- Tandatangan: Memastikan integriti token dan digunakan untuk mengesahkan bahawa pengirim token ialah siapa yang didakwanya.
Oleh itu, sintaks JWS JSON prototaip menggunakan Pensirilan JWS JSON yang diratakan adalah seperti berikut (untuk maklumat lanjut, lihat RFC-7515 Sec. 7.2.2):
{ "payload":"<payload contents>", "header":<header contents>, "signature":"<signature contents>" } </signature></header></payload>
Dalam JWS Compact Serialization, JTW diwakili sebagai gabungan:
BASE64URL(UTF8(JWS Header)) || '.' || BASE64URL(JWS Payload) || '.' || BASE64URL(JWS Signature)
Contoh token JWT akan kelihatan seperti ini (diambil daripada salah satu ujian Flama di sini):
eyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9.eyJkYXRhIjogeyJmb28iOiAiYmFyIn0sICJpYXQiOiAwfQ==.J3zdedMZSFNOimstjJat0V28rM_b1UU62XCp9dg_5kg=
Pengepala
Untuk objek JWT umum, pengepala boleh mengandungi pelbagai medan (cth., menerangkan operasi kriptografi yang digunakan pada token) bergantung pada sama ada JWT ialah JWS atau JWE. Walau bagaimanapun, terdapat beberapa medan yang lazim untuk kedua-dua kes, dan juga yang paling biasa digunakan:
- alg: The algorithm used to sign the token, e.g. HS256, HS384, HS512. To see the list of supported algorithms in flama, have a look at it here.
- typ: The type parameter is used to declare the media type of the JWT. If present, it is recommended to have the value JWT to indicate that the object is a JWT. For more information on this field, see RFC-7519 Sec. 5.1.
- cty: The content type is used to communicate structural information about the JWT. For example, if the JWT is a Nested JWT, the value of this field would be JWT. For more information on this field, see RFC-7519 Sec. 5.2.
The Payload
The payload contains the claims (information) that the token is carrying. The claims are represented as a JSON object, and they can be divided into three categories, according to the standard RFC-7519 Sec. 4:
- Registered claims: These are a set of predefined claims that are not mandatory but recommended. Some of the most common ones are iss (issuer), sub (subject), aud (audience), exp (expiration time), nbf (not before), iat (issued at), and jti (JWT ID). For a detailed explanation of each of these claims, see RFC-7519 Sec. 4.1.
- Public claims: These are claims that are defined by the user and can be used to share information between different services.
- Private claims: These are claims that are defined by the user and are intended to be shared between the parties that are involved in the communication.
The Signature
The signature is used to ensure the integrity of the token and to verify that the sender of the token is who it claims to be. The signature is calculated using the header and the payload, and it is generated using the algorithm specified in the header. The signature is then appended to the token to create the final JWT.
Implementing JWT Authentication with Flama
Having introduced the concept of JWT, its potential applications, besides a prototypical authentication flow, we can now move on to the implementation of a JWT-authenticated API using Flama. But, before we start, if you need to review the basics on how to create a simple API with flama, or how to run the API once you already have the code ready, then you might want to check out the quick start guide. There, you'll find the fundamental concepts and steps required to follow this post. Now, without further ado, let's get started with the implementation.
Setting up the development environment
Our first step is to create our development environment, and install all required dependencies for this project. The good thing is that for this example we only need to install flama to have all the necessary tools to implement JWT authentication. We'll be using poetry to manage our dependencies, but you can also use pip if you prefer:
poetry add flama[full]
If you want to know how we typically organise our projects, have a look at our previous post here, where we explain in detail how to set up a python project with poetry, and the project folder structure we usually follow.
Base application
Let's start with a simple application that has a single public endpoint. This endpoint will return a brief description of the API.
from flama import Flama app = Flama( title="JWT protected API", version="1.0.0", description="JWT Authentication with Flama ?", docs="/docs/", ) @app.get("/public/info/", name="public-info") def info(): """ tags: - Public summary: Ping description: Returns a brief description of the API responses: 200: description: Successful ping. """ return {"title": app.schema.title, "description": app.schema.description, "public": True}
If you want to run this application, you can save the code above in a file called main.py under the src folder, and then run the following command (remember to have the poetry environment activated, otherwise you'll need to prefix the command with poetry run):
flama run --server-reload src.main:app INFO: Started server process [3267] INFO: Waiting for application startup. INFO: Application startup complete. INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
where the --server-reload flag is optional and is used to reload the server automatically when the code changes. This is very useful during development, but you can remove it if you don't need it. For a full list of the available options, you can run flama run --help, or check the documentation.
Authentication: Flama JWT Component
Ok, now that we have our base application running, let's add a new endpoint that requires authentication. To do this, we'll need to use the following flama functionality:
- Components (specifically JWTComponent): They're the building blocks for dependency injection in flama.
- Middlewares (specifically AuthenticationMiddleware): They're used as a processing layer between the incoming requests from clients and the responses sent by the server.
Let's proceed and modify our base application to include the JWT authentication as intended, and then we'll explain the code in more detail.
import uuid from flama import Flama from flama.authentication import AuthenticationMiddleware, JWTComponent from flama.middleware import Middleware JWT_SECRET_KEY = uuid.UUID(int=0).bytes # The secret key used to signed the token JWT_HEADER_KEY = "Authorization" # Authorization header identifie JWT_HEADER_PREFIX = "Bearer" # Bearer prefix JWT_ALGORITHM = "HS256" # Algorithm used to sign the token JWT_TOKEN_EXPIRATION = 300 # 5 minutes in seconds JWT_REFRESH_EXPIRATION = 2592000 # 30 days in seconds JWT_ACCESS_COOKIE_KEY = "access_token" JWT_REFRESH_COOKIE_KEY = "refresh_token" app = Flama( title="JWT-protected API", version="1.0.0", description="JWT Authentication with Flama ?", docs="/docs/", ) app.add_component( JWTComponent( secret=JWT_SECRET_KEY, header_key=JWT_HEADER_KEY, header_prefix=JWT_HEADER_PREFIX, cookie_key=JWT_ACCESS_COOKIE_KEY, ) ) app.add_middleware( Middleware(AuthenticationMiddleware), ) # The same code as before here # ...
Although we've decided to add the component and middleware after the initialisation of the app, you can also add them directly to the Flama constructor by passing the components and middlewares arguments:
app = Flama( title="JWT-protected API", version="1.0.0", description="JWT Authentication with Flama ?", docs="/docs/", components=[ JWTComponent( secret=JWT_SECRET_KEY, header_key=JWT_HEADER_KEY, header_prefix=JWT_HEADER_PREFIX, cookie_key=JWT_ACCESS_COOKIE_KEY, ) ], middlewares=[ Middleware(AuthenticationMiddleware), ] )
This is just a matter of preference, and both ways are completely valid.
With the modifications introduced above, we can proceed to add a new (and JWT protected) endpoint. However, before we do that, let's briefly explain in more detail the functionality we've just introduced, namely components and middlewares.
Flama Components
As you might've already noticed, whenever we create a new application we're instantiating a Flama object. As the application grows, as is the case right now, also grows the need to add more dependencies to it. Without dependency injection (DI), this would mean that the Flama class would have to create and manage all its dependencies internally. This would make the class tightly coupled to specific implementations and harder to test or modify. With DI the dependencies are provided to the class from the outside, which decouples the class from specific implementations, making it more flexible and easier to test. And, this is where components come into play in flama.
In flama, a Component is a building block for dependency injection. It encapsulates logic that determines how specific dependencies should be resolved when the application runs. Components can be thought of as self-contained units responsible for providing the necessary resources that the application's constituents need. Each Component in flama has a unique identity, making it easy to look up and inject the correct dependency during execution. Components are highly flexible, allowing you to handle various types of dependencies, whether they're simple data types, complex objects, or asynchronous operations. There are several built-in components in flama, although in this post we're going to exclusively focus on the JWTComponent, which (as all others) derives from the Component class.
The JWTComponent contains all the information and logic necessary for extracting a JWT from either the headers or cookies of an incoming request, decoding it, and then validating its authenticity. The component is initialised with the following parameters:
- secret: The secret key used to decode the JWT.
- header_key: The key used to identify the JWT in the request headers.
- header_prefix: The prefix used to identify the JWT in the request headers.
- cookie_key: The key used to identify the JWT in the request cookies.
In the code above, we've initialised the JWTComponent with some dummy values for the secret key, header key, header prefix, and cookie key. In a real-world scenario, you should replace these values with your own secret key and identifiers.
Flama Middlewares
Middleware is a crucial concept that acts as a processing layer between the incoming requests from clients and the responses sent by the server. In simpler terms, middleware functions as a gatekeeper or intermediary that can inspect, modify, or act on requests before they reach the core logic of your application, and also on the responses before they are sent back to the client.
In flama, middleware is used to handle various tasks that need to occur before a request is processed or after a response is generated. In this particular case, the task we want to handle is the authentication of incoming requests using JWT. To achieve this, we're going to use the built-in class AuthenticationMiddleware. This middleware is designed to ensure that only authorised users can access certain parts of your application. It works by intercepting incoming requests, checking for the necessary credentials (such as a valid JWT token), and then allowing or denying access based on the user's permissions which are encoded in the token.
Here’s how it works:
- Initialization: The middleware is initialized with the Flama application instance. This ties the middleware to your app, so it can interact with incoming requests and outgoing responses.
- Handling Requests: The __call__ method of the middleware is called every time a request is made to your application. If the request type is http or websocket, the middleware checks if the route (the path the request is trying to access) requires any specific permissions.
- Permission Check: The middleware extracts the required permissions for the route from the route's tags. If no permissions are required, the request is passed on to the next layer of the application. If permissions are required, the middleware attempts to resolve a JWT token from the request. This is done using the previously discussed JWTComponent.
- Validating Permissions: Once the JWT token is resolved, the middleware checks the permissions associated with the token against those required by the route. If the user’s permissions match or exceed the required permissions, the request is allowed to proceed. Otherwise, the middleware returns a 403 Forbidden response, indicating that the user does not have sufficient permissions.
- Handling Errors: If the JWT token is invalid or cannot be resolved, the middleware catches the exception and returns an appropriate error response, such as 401 Unauthorized.
Adding a protected endpoint
By now, we should have a pretty solid understanding on what our code does, and how it does it. Nevertheless, we still need to see what we have to do to add a protected endpoint to our application. Let's do it:
@app.get("/private/info/", name="private-info", tags={"permissions": ["my-permission-name"]}) def protected_info(): """ tags: - Private summary: Ping description: Returns a brief description of the API responses: 200: description: Successful ping. """ return {"title": app.schema.title, "description": app.schema.description, "public": False}
And that's it! We've added a new endpoint that requires authentication to access. The functionality is exactly the same as the previous endpoint, but this time we've added the tags parameter to the @app.get decorator. The tag parameter can be used to specify additional metadata for an endpoint. But, if we use the special key permissions whilst using the AuthenticationMiddleware, we can specify the permissions required to access the endpoint. In this case, we've set the permissions to ["my-permission-name"], which means that only users with the permission my-permission-name will be able to access this endpoint. If a user tries to access the endpoint without the required permission, they will receive a 403 Forbidden response.
Running the application
If we put all the pieces together, we should have a fully functional application that has a public endpoint and a private endpoint that requires authentication. The full code should look something like this:
import uuid from flama import Flama from flama.authentication import AuthenticationMiddleware, JWTComponent from flama.middleware import Middleware JWT_SECRET_KEY = uuid.UUID(int=0).bytes # The secret key used to signed the token JWT_HEADER_KEY = "Authorization" # Authorization header identifie JWT_HEADER_PREFIX = "Bearer" # Bearer prefix JWT_ALGORITHM = "HS256" # Algorithm used to sign the token JWT_TOKEN_EXPIRATION = 300 # 5 minutes in seconds JWT_REFRESH_EXPIRATION = 2592000 # 30 days in seconds JWT_ACCESS_COOKIE_KEY = "access_token" JWT_REFRESH_COOKIE_KEY = "refresh_token" app = Flama( title="JWT-protected API", version="1.0.0", description="JWT Authentication with Flama ?", docs="/docs/", ) app.add_component( JWTComponent( secret=JWT_SECRET_KEY, header_key=JWT_HEADER_KEY, header_prefix=JWT_HEADER_PREFIX, cookie_key=JWT_ACCESS_COOKIE_KEY, ) ) app.add_middleware( Middleware(AuthenticationMiddleware), ) @app.get("/public/info/", name="public-info") def info(): """ tags: - Public summary: Info description: Returns a brief description of the API responses: 200: description: Successful ping. """ return {"title": app.schema.title, "description": app.schema.description, "public": True} @app.get("/private/info/", name="private-info", tags={"permissions": ["my-permission-name"]}) def protected_info(): """ tags: - Private summary: Info description: Returns a brief description of the API responses: 200: description: Successful ping. """ return {"title": app.schema.title, "description": app.schema.description, "public": False}
Running the application as before, we should see the following output:
flama run --server-reload src.main:app INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit) INFO: Started reloader process [48145] using WatchFiles INFO: Started server process [48149] INFO: Waiting for application startup. INFO: Application startup complete.
If we navigate with our favourite browser to http://127.0.0.1:8000/docs/ we should see the documentation of our API as shown below:
As we can already expect, if we send a request to the public endpoint /public/info/ we should receive a successful response:
curl --request GET \ --url http://localhost:8000/public/info/ \ --header 'Accept: application/json' {"title":"JWT protected API","description":"JWT Authentication with Flama ?","public":true}
However, if we try to access the private endpoint /private/info/ without providing a valid JWT token, we should receive a 401 Unauthorized response:
curl --request GET \ --url http://localhost:8000/private/info/ \ --header 'Accept: application/json' {"status_code":401,"detail":"Unauthorized","error":null}%
Thus, we can say that the JWT authentication is working as expected, and only users with a valid JWT token will be able to access the private endpoint.
Adding the login endpoint
As we've just seen, we have a private endpoint which requires a valid JWT token to be accessed. But, how do we get this token? The answer is simple: we need to create a login endpoint that will authenticate the user and return a valid JWT token. To do this, we're going to define the schemas for the input and output of the login endpoint (feel free to use your own schemas if you prefer, for instance, adding more fields to the input schema such as username or email):
import uuid import typing import pydantic class User(pydantic.BaseModel): id: uuid.UUID password: typing.Optional[str] = None class UserToken(pydantic.BaseModel): id: uuid.UUID token: str
Now, let's add the login endpoint to our application:
import http from flama import types from flama.authentication.jwt import JWT from flama.http import APIResponse @app.post("/auth/", name="signin") def signin(user: types.Schema[User]) -> types.Schema[UserToken]: """ tags: - Public summary: Authenticate description: Returns a user token to access protected endpoints responses: 200: description: Successful ping. """ token = ( JWT( header={"alg": JWT_ALGORITHM}, payload={ "iss": "vortico", "data": {"id": str(user["id"]), "permissions": ["my-permission-name"]}, }, ) .encode(JWT_SECRET_KEY) .decode() ) return APIResponse( status_code=http.HTTPStatus.OK, schema=types.Schema[UserToken], content={"id": str(user["id"]), "token": token} )
In this code snippet, we've defined a new endpoint /auth/ that receives a User object as input and returns a UserToken object as output. The User object contains the id of the user and the password (which is optional for this example, since we're not going to be comparing it with any stored password). The UserToken object contains the id of the user and the generated token that will be used to authenticate the user in the private endpoints. The token is generated using the JWT class, and contains the permissions granted to the user, in this case, the permission my-permission-name, which will allow the user to access the private endpoint /private/info/.
Now, let's test the login endpoint to see if it's working as expected. For this, we can proceed via the /docs/ page:
Or, we can use curl to send a request to the login endpoint:
curl --request POST \ --url http://localhost:8000/auth/ \ --header 'Accept: application/json' \ --header 'Content-Type: application/json' \ --data '{ "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08", "password": "string" }'
which should return a response similar to this:
{"id":"497f6eca-6276-4993-bfeb-53cbbbba6f08","token":"eyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9.eyJkYXRhIjogeyJpZCI6ICI0OTdmNmVjYS02Mjc2LTQ5OTMtYmZlYi01M2NiYmJiYTZmMDgiLCAicGVybWlzc2lvbnMiOiBbIm15LXBlcm1pc3Npb24tbmFtZSJdfSwgImlhdCI6IDE3MjU5ODk5NzQsICJpc3MiOiAidm9ydGljbyJ9.vwwgqahgtALckMAzQHWpNDNwhS8E4KAGwNiFcqEZ_04="}
That string is the JWT token that we can use to authenticate the user in the private endpoint. Let's try to access the private endpoint using the token:
curl --request GET \ --url http://localhost:8000/private/info/ \ --header 'Accept: application/json' \ --header 'Authorization: Bearer eyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9.eyJkYXRhIjogeyJpZCI6ICI0OTdmNmVjYS02Mjc2LTQ5OTMtYmZlYi01M2NiYmJiYTZmMDgiLCAicGVybWlzc2lvbnMiOiBbIm15LXBlcm1pc3Npb24tbmFtZSJdfSwgImlhdCI6IDE3MjU5ODk5NzQsICJpc3MiOiAidm9ydGljbyJ9.vwwgqahgtALckMAzQHWpNDNwhS8E4KAGwNiFcqEZ_04='
which now returns a successful response:
{"title":"JWT protected API","description":"JWT Authentication with Flama ?","public":false}
And that's it! We've successfully implemented JWT authentication in our Flama application. We now have a public endpoint that can be accessed without authentication, a private endpoint that requires a valid JWT token to be accessed, and a login endpoint that generates a valid JWT token for the user.
Conclusions
The privatisation of some endpoints (even all at some instances) is a common requirement in many applications, even more so when dealing with sensitive data as is often the case in Machine Learning APIs which process personal or financial information, to name some examples. In this post, we've covered the fundamentals of token-based authentication for APIs, and how this can be implemented without much of a hassle using the new features introduced in the latest release of flama (introduced in a previous post). Thanks to the JWTComponent and AuthenticationMiddleware, we can secure our API endpoints and control the access to them based on the permissions granted to the user, and all this with just a few modifications to our base unprotected application.
We hope you've found this post useful, and that you're now ready to implement JWT authentication in your own flama applications. If you have any questions or comments, feel free to reach out to us. We're always happy to help!
Stay tuned for more posts on flama and other exciting topics in the world of AI and software development. Until next time!
Support our work
If you like what we do, there is a free and easy way to support our work. Gift us a ⭐ at Flama.
GitHub ⭐'s mean a world to us, and give us the sweetest fuel to keep working on it to help others on its journey to build robust Machine Learning APIs.
You can also follow us on ?, where we share our latest news and updates, besides interesting threads on AI, software development, and much more.
References
- Flama documentation
- Flama GitHub repository
- Flama PyPI package
About the authors
- Vortico: We're specialised in software development to help businesses enhance and expand their AI and technology capabilities.
Atas ialah kandungan terperinci API ML yang dilindungi dengan Pengesahan JWT Flama. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Memuatkan Fail Pickle di Python 3.6 Kesalahan Laporan Alam Sekitar: ModulenotFoundError: Nomodulenamed ...


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular