Rumah  >  Artikel  >  Peranti teknologi  >  Super kuat! Sepuluh algoritma pembelajaran mesin teratas yang mesti anda ketahui

Super kuat! Sepuluh algoritma pembelajaran mesin teratas yang mesti anda ketahui

WBOY
WBOYasal
2024-06-10 21:53:52856semak imbas

Super kuat! Sepuluh algoritma pembelajaran mesin teratas yang mesti anda ketahui

1. Regresi Linear

Regression linear ialah salah satu algoritma pembelajaran mesin yang paling mudah dan paling banyak digunakan untuk pemodelan ramalan.

Ia adalah algoritma pembelajaran diselia yang digunakan untuk meramalkan nilai pembolehubah bersandar berdasarkan satu atau lebih pembolehubah tidak bersandar.

Definisi

Inti regresi linear adalah untuk memuatkan model linear berdasarkan data yang diperhatikan.

Satu model linear diwakili oleh persamaan berikut:

di mana

  • ialah pembolehubah bersandar (pembolehubah yang ingin kita ramalkan)
  • ialah pembolehubah tidak bersandar buat ramalan)
  • ialah kecerunan garis lurus
  • ialah pintasan-y (persilangan garis lurus dan paksi-y)

melibatkan algoritma regresi linear yang terbaik garisan yang sesuai melalui titik data. Ini biasanya dilakukan dengan meminimumkan perbezaan kuasa dua antara nilai yang diperhatikan dan diramalkan.

Metrik Penilaian

  • Mean Squared Error (MSE): Purata ralat ukuran kuasa dua. Lebih rendah nilai, lebih baik.
  • R-kuasa dua: Menunjukkan peratusan variasi dalam pembolehubah bersandar yang boleh diramalkan daripada pembolehubah bebas. Lebih dekat dengan 1 lebih baik.
from sklearn.datasets import load_diabetesfrom sklearn.model_selection import train_test_splitfrom sklearn.linear_model import LinearRegressionfrom sklearn.metrics import mean_squared_error, r2_score# Load the Diabetes datasetdiabetes = load_diabetes()X, y = diabetes.data, diabetes.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the Linear Regression modelmodel = LinearRegression()model.fit(X_train, y_train)# Predicting the test set resultsy_pred = model.predict(X_test)# Evaluating the modelmse = mean_squared_error(y_test, y_pred)r2 = r2_score(y_test, y_pred)print("MSE is:", mse)print("R2 score is:", r2)

2. Regresi Logistik

Regresi logistik digunakan untuk masalah klasifikasi. Ia meramalkan kebarangkalian bahawa titik data tertentu tergolong dalam kategori tertentu, seperti ya/tidak atau 0/1.

Metrik Penilaian
  • Ketepatan: Ketepatan ialah nisbah pemerhatian yang diramalkan dengan betul kepada jumlah pemerhatian.
  • Ketepatan dan Ingatan: Ketepatan ialah nisbah pemerhatian positif yang diramalkan dengan betul kepada semua pemerhatian positif yang dijangkakan. Ingat kembali ialah nisbah pemerhatian positif yang diramalkan dengan betul kepada semua pemerhatian sebenar.
  • Skor F1: Keseimbangan antara ingat semula dan ketepatan.
from sklearn.datasets import load_breast_cancerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score# Load the Breast Cancer datasetbreast_cancer = load_breast_cancer()X, y = breast_cancer.data, breast_cancer.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the Logistic Regression modelmodel = LogisticRegression(max_iter=10000)model.fit(X_train, y_train)# Predicting the test set resultsy_pred = model.predict(X_test)# Evaluating the modelaccuracy = accuracy_score(y_test, y_pred)precision = precision_score(y_test, y_pred)recall = recall_score(y_test, y_pred)f1 = f1_score(y_test, y_pred)# Print the resultsprint("Accuracy:", accuracy)print("Precision:", precision)print("Recall:", recall)print("F1 Score:", f1)

3. Pokok Keputusan

Pokok keputusan ialah algoritma pembelajaran mesin yang serba boleh dan berkuasa yang boleh digunakan untuk tugasan pengelasan dan regresi.

Mereka popular kerana kesederhanaan, kebolehtafsiran dan keupayaan untuk mengendalikan kedua-dua data berangka dan kategori.

Definisi

Pepohon keputusan terdiri daripada nod yang mewakili titik keputusan, cabang yang mewakili kemungkinan hasil dan daun yang mewakili keputusan atau ramalan muktamad.

Setiap nod dalam pepohon keputusan sepadan dengan ciri, dan cawangan mewakili kemungkinan nilai ciri tersebut.

Algoritma untuk membina pepohon keputusan melibatkan pembahagian set data secara rekursif kepada subset berdasarkan nilai ciri yang berbeza. Matlamatnya adalah untuk mencipta subset homogen di mana pembolehubah sasaran (pembolehubah yang ingin kita ramalkan) adalah serupa dalam setiap subset.

Proses pemisahan berterusan sehingga kriteria pemberhentian dipenuhi, seperti kedalaman maksimum, bilangan sampel minimum, atau tiada penambahbaikan lanjut boleh dibuat. . 4 .Naive Bayes

Pengelas Naive Bayes ialah keluarga "pengelas kebarangkalian" mudah yang menggunakan teorem Bayes dan andaian kebebasan yang kuat (naif) antara ciri. Ia digunakan terutamanya untuk klasifikasi teks.

  • Ia mengira kebarangkalian setiap kelas dan kebarangkalian bersyarat bagi setiap kelas yang diberikan setiap nilai input. Kebarangkalian ini kemudiannya digunakan untuk mengklasifikasikan nilai baru berdasarkan kebarangkalian tertinggi.
  • Metrik Penilaian:
Ketepatan: Mengukur ketepatan keseluruhan model.

Ketepatan, ingatan semula dan skor F1: amat penting apabila pengagihan kelas tidak seimbang.

from sklearn.datasets import load_winefrom sklearn.tree import DecisionTreeClassifier# Load the Wine datasetwine = load_wine()X, y = wine.data, wine.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the Decision Tree modelmodel = DecisionTreeClassifier(random_state=42)model.fit(X_train, y_train)# Predicting the test set resultsy_pred = model.predict(X_test)# Evaluating the modelaccuracy = accuracy_score(y_test, y_pred)precision = precision_score(y_test, y_pred, average='macro')recall = recall_score(y_test, y_pred, average='macro')f1 = f1_score(y_test, y_pred, average='macro')# Print the resultsprint("Accuracy:", accuracy)print("Precision:", precision)print("Recall:", recall)print("F1 Score:", f1)

5.K-最近邻(KNN)

K 最近邻 (KNN) 是一种简单直观的机器学习算法,用于分类和回归任务。

它根据输入数据点与其在特征空间中最近邻居的相似性进行预测。

在 KNN 中,新数据点的预测由其 k 个最近邻的多数类(用于分类)或平均值(用于回归)确定。KNN 中的 “k” 表示要考虑的邻居数量,这是用户选择的超参数。

算法

KNN 算法包括以下步骤

  1. 计算距离:计算新数据点与数据集中所有其他数据点之间的距离。
  2. 查找邻居:根据计算的距离选择 k 个最近邻居。
  3. 多数投票或平均:对于分类,分配 k 个邻居中出现最频繁的类标签。对于回归,计算 k 个邻居的目标变量的平均值。
  4. 进行预测:将预测的类标签或值分配给新数据点。

评估指标

  • 「分类」:准确率、精确率、召回率、F1 分数。
  • 「回归」:均方误差 (MSE)、R 平方。
from sklearn.datasets import load_winefrom sklearn.model_selection import train_test_splitfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score# Load the Wine datasetwine = load_wine()X, y = wine.data, wine.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the KNN modelknn_model = KNeighborsClassifier(n_neighbors=3)knn_model.fit(X_train, y_train)# Predicting the test set resultsy_pred_knn = knn_model.predict(X_test)# Evaluating the modelaccuracy_knn = accuracy_score(y_test, y_pred_knn)precision_knn = precision_score(y_test, y_pred_knn, average='macro')recall_knn = recall_score(y_test, y_pred_knn, average='macro')f1_knn = f1_score(y_test, y_pred_knn, average='macro')# Print the resultsprint("Accuracy:", accuracy_knn)print("Precision:", precision_knn)print("Recall:", recall_knn)print("F1 Score:", f1_knn)

6.SVM

支持向量机 (SVM) 是一种强大的监督学习算法,用于分类和回归任务。

它们在高维空间中特别有效,广泛应用于图像分类、文本分类和生物信息学等各个领域。

算法原理

支持向量机的工作原理是找到最能将数据分为不同类别的超平面。

选择超平面以最大化边距,即超平面与每个类的最近数据点(支持向量)之间的距离。

SVM 还可以通过使用核函数将输入空间转换为可以线性分离的高维空间来处理非线性数据。

训练 SVM 的算法包括以下步骤:

  1. 数据准备:预处理数据并根据需要对分类变量进行编码。
  2. 选择核:选择合适的核函数,例如线性、多项式或径向基函数 (RBF)。
  3. 模型训练:通过寻找使类之间的间隔最大化的超平面来训练 SVM。
  4. 模型评估:使用交叉验证或保留验证集评估 SVM 的性能。

评估指标

  • 「分类」:准确率、精确率、召回率、F1 分数。
  • 「回归」:均方误差 (MSE)、R 平方。
from sklearn.svm import SVCbreast_cancer = load_breast_cancer()X, y = breast_cancer.data, breast_cancer.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the SVM modelsvm_model = SVC()svm_model.fit(X_train, y_train)# Predicting the test set resultsy_pred_svm = svm_model.predict(X_test)# Evaluating the modelaccuracy_svm = accuracy_score(y_test, y_pred_svm)precision_svm = precision_score(y_test, y_pred_svm, average='macro')recall_svm = recall_score(y_test, y_pred_svm, average='macro')f1_svm = f1_score(y_test, y_pred_svm, average='macro')accuracy_svm, precision_svm, recall_svm, f1_svm# Print the resultsprint("Accuracy:", accuracy_svm)print("Precision:", precision_svm)print("Recall:", recall_svm)print("F1 Score:", f1_svm)

7.随机森林

随机森林是一种集成学习技术,它结合了多个决策树来提高预测性能并减少过度拟合。

它们广泛用于分类和回归任务,并以其鲁棒性和多功能性而闻名。

算法步骤

随机森林是根据数据集的随机子集并使用特征的随机子集进行训练的决策树的集合。

森林中的每棵决策树独立地进行预测,最终的预测是通过聚合所有树的预测来确定的。

构建随机森林的算法包括以下步骤

  1. 随机采样:从数据集中随机选择样本子集(带替换)来训练每棵树。
  2. 特征随机化:随机选择每个节点的特征子集以考虑分割。
  3. 树构建:使用采样数据和特征构建多个决策树。
  4. 投票或平均:聚合所有树的预测以做出最终预测。

评估指标

  • 分类:准确率、精确率、召回率、F1 分数。
  • 回归:均方误差 (MSE)、R 平方。
from sklearn.ensemble import RandomForestClassifierbreast_cancer = load_breast_cancer()X, y = breast_cancer.data, breast_cancer.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the Random Forest modelrf_model = RandomForestClassifier(random_state=42)rf_model.fit(X_train, y_train)# Predicting the test set resultsy_pred_rf = rf_model.predict(X_test)# Evaluating the modelaccuracy_rf = accuracy_score(y_test, y_pred_rf)precision_rf = precision_score(y_test, y_pred_rf, average='macro')recall_rf = recall_score(y_test, y_pred_rf, average='macro')f1_rf = f1_score(y_test, y_pred_rf, average='macro')# Print the resultsprint("Accuracy:", accuracy)print("Precision:", precision)print("Recall:", recall)print("F1 Score:", f1)

8.K-均值聚类

K 均值聚类是一种无监督学习算法,用于将数据分组为 “K” 个聚类。确定 k 个质心后,每个数据点被分配到最近的簇。

该算法将数据点分配给一个簇,使得数据点与簇质心之间的平方距离之和最小。

评估指标

  • 「惯性」:样本到最近聚类中心的总平方距离称为惯性。值越低越好。
  • 「Silhouette Score」:表示一个项目属于其自身集群的紧密程度。高轮廓分数意味着该项目与其自身的集群匹配良好,而与附近的集群匹配不佳。轮廓得分从 -1 到 1。
from sklearn.datasets import load_irisfrom sklearn.cluster import KMeansfrom sklearn.metrics import silhouette_score# Load the Iris datasetiris = load_iris()X = iris.data# Applying K-Means Clusteringkmeans = KMeans(n_clusters=3, random_state=42)kmeans.fit(X)# Predicting the cluster for each data pointy_pred_clusters = kmeans.predict(X)# Evaluating the modelinertia = kmeans.inertia_silhouette = silhouette_score(X, y_pred_clusters)print("Inertia:", inertia)print("Silhouette:", silhouette)

9.PCA

降维是通过使用主成分分析 (PCA) 来完成的。它将数据转换为新的坐标系,减少变量数量,同时尽可能多地保留原始数据的变化。

使用 PCA 可以找到使数据方差最大化的主要成分或轴。第一个主成分捕获最大方差,第二个主成分(与第一个主成分正交)捕获第二大方差,依此类推。

评估指标

  • 「解释方差」:表示每个主成分捕获的数据方差有多少。
  • 「总解释方差」:由所选主成分解释的累积方差。
from sklearn.datasets import load_breast_cancerfrom sklearn.decomposition import PCAimport numpy as np# Load the Breast Cancer datasetbreast_cancer = load_breast_cancer()X = breast_cancer.data# Applying PCApca = PCA(n_compnotallow=2)# Reducing to 2 dimensions for simplicitypca.fit(X)# Transforming the dataX_pca = pca.transform(X)# Explained Varianceexplained_variance = pca.explained_variance_ratio_# Total Explained Variancetotal_explained_variance = np.sum(explained_variance)print("Explained variance:", explained_variance)print("Total Explained Variance:", total_explained_variance)

10.梯度提升算法

梯度提升是一种先进的机器学习技术。它依次构建多个弱预测模型(通常是决策树)。每个新模型都逐渐最小化整个模型的损失函数(误差)。

评估指标

  • 「对于分类」:准确率、精确率、召回率、F1 分数。
  • 「对于回归」:均方误差 (MSE)、R 平方。
from sklearn.datasets import load_diabetesfrom sklearn.ensemble import GradientBoostingRegressorfrom sklearn.metrics import mean_squared_error, r2_score# Load the Diabetes datasetdiabetes = load_diabetes()X, y = diabetes.data, diabetes.target# Splitting the dataset into training and testing setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Creating and training the Gradient Boosting modelgb_model = GradientBoostingRegressor(random_state=42)gb_model.fit(X_train, y_train)# Predicting the test set resultsy_pred_gb = gb_model.predict(X_test)# Evaluating the modelmse_gb = mean_squared_error(y_test, y_pred_gb)r2_gb = r2_score(y_test, y_pred_gb)print("MSE:", mse_gb)


Atas ialah kandungan terperinci Super kuat! Sepuluh algoritma pembelajaran mesin teratas yang mesti anda ketahui. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn