MongoDB学习笔记(索引)Posted on 一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: db.test.ge
MongoDB学习笔记(索引) Posted on
一、索引基础:
MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令:
> db.test.ensureIndex({"username":1})
可以通过下面的名称查看索引是否已经成功建立:
> db.test.getIndexes()
删除索引的命令是:
> db.test.dropIndex({"username":1})
在MongoDB中,我们同样可以创建复合索引,如:
-- 数字1表示username键的索引按升序存储,-1表示age键的索引按照降序方式存储。
> db.test.ensureIndex({"username":1, "age":-1})
该索引被创建后,基于username和age的查询将会用到该索引,或者是基于username的查询也会用到该索引,但是只是基于age的查询将不会用到该复合索引。因此可以说,如果想用到复合索引,必须在查询条件中包含复合索引中的前N个索引列。然而如果查询条件中的键值顺序和复合索引中的创建顺序不一致的话,MongoDB可以智能的帮助我们调整该顺序,以便使复合索引可以为查询所用。如:
> db.test.find({"age": 30, "username": "stephen"})
对于上面示例中的查询条件,MongoDB在检索之前将会动态的调整查询条件文档的顺序,服务器空间,以使该查询可以用到刚刚创建的复合索引。
我们可以为内嵌文档创建索引,其规则和普通文档没有任何差别,如:
> db.test.ensureIndex({"comments.date":1})
对于上面创建的索引,MongoDB都会根据索引的keyname和索引方向为新创建的索引自动分配一个索引名,下面的命令可以在创建索引时为其指定索引名,如:
> db.test.ensureIndex({"username":1},{"name":"testindex"})
随着集合的增长,需要针对查询中大量的排序做索引。如果没有对索引的键调用sort,MongoDB需要将所有数据提取到内存并排序。因此在做无索引排序时,如果数据量过大以致无法在内存中进行排序,此时MongoDB将会报错。
二、唯一索引:
在缺省情况下创建的索引均不是唯一索引。下面的示例将创建唯一索引,如:
> db.test.ensureIndex({"userid":1},{"unique":true})
如果再次插入userid重复的文档时,MongoDB将报错,以提示插入重复键,如:
> db.test.insert({"userid":5})
> db.test.insert({"userid":5})
E11000 duplicate key error index: test.test.$userid_1 dup key: { : 5.0 }
如果插入的文档中不包含userid键,那么该文档中该键的值为null,如果多次插入类似的文档,MongoDB将会报出同样的错误,如:
> db.test.insert({"userid1":5})
> db.test.insert({"userid1":5})
E11000 duplicate key error index: test.test.$userid_1 dup key: { : null }
如果在创建唯一索引时已经存在了重复项,我们可以通过下面的命令帮助我们在创建唯一索引时消除重复文档,仅保留发现的第一个文档,如:
--先删除刚刚创建的唯一索引。
> db.test.dropIndex({"userid":1})
--插入测试数据,以保证集合中有重复键存在。
> db.test.remove()
> db.test.insert({"userid":5})
> db.test.insert({"userid":5})
--创建唯一索引,并消除重复数据。
> db.test.ensureIndex({"userid":1},{"unique":true,"dropDups":true})
--查询结果确认,重复的键确实在创建索引时已经被删除。
> db.test.find()
{ "_id" : ObjectId("4fe823c180144abd15acd52e"), "userid" : 5 }
我们同样可以创建复合唯一索引,即保证复合键值唯一即可。如:
> db.test.ensureIndex({"userid":1,"age":1},{"unique":true})
三、使用explain:
explain是非常有用的工具,会帮助你获得查询方面诸多有用的信息。只要对游标调用该方法,就可以得到查询细节。explain会返回一个文档,而不是游标本身。如:
> db.test.find().explain()
{
"cursor" : "BasicCursor",
"nscanned" : 1,
"nscannedObjects" : 1,
"n" : 1,
"millis" : 0,
"nYields" : 0,
"nChunkSkips" : 0,
"isMultiKey" : false,
"indexOnly" : false,
"indexBounds" : {
}
}
explain会返回查询使用的索引情况,香港虚拟主机,耗时和扫描文档数的统计信息。
"cursor":"BasicCursor"表示没有使用索引。
"nscanned":1 表示查询了多少个文档。
"n":1 表示返回的文档数量。
"millis":0 表示整个查询的耗时。
四、索引管理:
system.indexes集合中包含了每个索引的详细信息,香港空间,因此可以通过下面的命令查询已经存在的索引,如:
> db.system.indexes.find()
如果在为已有数据的文档创建索引时,可以执行下面的命令,以使MongoDB在后台创建索引,这样的创建时就不会阻塞其他操作。但是相比而言,以阻塞方式创建索引,会使整个创建过程效率更高,但是在创建时MongoDB将无法接收其他的操作。
> db.test.ensureIndex({"username":1},{"background":true})

Dalam pengoptimuman pangkalan data, strategi pengindeksan hendaklah dipilih mengikut keperluan pertanyaan: 1. Apabila pertanyaan melibatkan pelbagai lajur dan urutan syarat ditetapkan, gunakan indeks komposit; 2. Apabila pertanyaan melibatkan pelbagai lajur tetapi urutan syarat tidak ditetapkan, gunakan pelbagai indeks lajur tunggal. Indeks komposit sesuai untuk mengoptimumkan pertanyaan berbilang lajur, manakala indeks lajur tunggal sesuai untuk pertanyaan tunggal lajur.

Untuk mengoptimumkan pertanyaan perlahan MySQL, SlowQuerylog dan Performance_Schema perlu digunakan: 1. Dayakan SlowQueryLog dan tetapkan ambang untuk merakam pertanyaan perlahan; 2. Gunakan Performance_Schema untuk menganalisis butiran pelaksanaan pertanyaan, cari kesesakan prestasi dan mengoptimumkan.

MySQL dan SQL adalah kemahiran penting untuk pemaju. 1.MYSQL adalah sistem pengurusan pangkalan data sumber terbuka, dan SQL adalah bahasa standard yang digunakan untuk mengurus dan mengendalikan pangkalan data. 2.MYSQL menyokong pelbagai enjin penyimpanan melalui penyimpanan data yang cekap dan fungsi pengambilan semula, dan SQL melengkapkan operasi data yang kompleks melalui pernyataan mudah. 3. Contoh penggunaan termasuk pertanyaan asas dan pertanyaan lanjutan, seperti penapisan dan penyortiran mengikut keadaan. 4. Kesilapan umum termasuk kesilapan sintaks dan isu -isu prestasi, yang boleh dioptimumkan dengan memeriksa penyataan SQL dan menggunakan perintah menjelaskan. 5. Teknik pengoptimuman prestasi termasuk menggunakan indeks, mengelakkan pengimbasan jadual penuh, mengoptimumkan operasi menyertai dan meningkatkan kebolehbacaan kod.

MySQL Asynchronous Master-Slave Replikasi membolehkan penyegerakan data melalui binlog, meningkatkan prestasi baca dan ketersediaan yang tinggi. 1) Rekod pelayan induk berubah kepada binlog; 2) Pelayan hamba membaca binlog melalui benang I/O; 3) Server SQL Thread menggunakan binlog untuk menyegerakkan data.

MySQL adalah sistem pengurusan pangkalan data sumber terbuka. 1) Buat Pangkalan Data dan Jadual: Gunakan perintah Createdatabase dan Createtable. 2) Operasi Asas: Masukkan, Kemas kini, Padam dan Pilih. 3) Operasi lanjutan: Sertai, subquery dan pemprosesan transaksi. 4) Kemahiran Debugging: Semak sintaks, jenis data dan keizinan. 5) Cadangan Pengoptimuman: Gunakan indeks, elakkan pilih* dan gunakan transaksi.

Pemasangan dan operasi asas MySQL termasuk: 1. Muat turun dan pasang MySQL, tetapkan kata laluan pengguna root; 2. Gunakan arahan SQL untuk membuat pangkalan data dan jadual, seperti CreateTatabase dan Createtable; 3. Melaksanakan operasi CRUD, gunakan memasukkan, pilih, kemas kini, padamkan arahan; 4. Buat indeks dan prosedur tersimpan untuk mengoptimumkan prestasi dan melaksanakan logik kompleks. Dengan langkah -langkah ini, anda boleh membina dan mengurus pangkalan data MySQL dari awal.

Innodbbufferpool meningkatkan prestasi pangkalan data MySQL dengan memuatkan data dan halaman indeks ke dalam ingatan. 1) Halaman data dimuatkan ke dalam bufferpool untuk mengurangkan cakera I/O. 2) Halaman kotor ditandakan dan disegarkan ke cakera secara teratur. 3) Pengurusan Data Pengurusan Algoritma LRU Penghapusan. 4) Mekanisme pembacaan memuatkan halaman data yang mungkin terlebih dahulu.

MySQL sesuai untuk pemula kerana mudah dipasang, kuat dan mudah untuk menguruskan data. 1. Pemasangan dan konfigurasi mudah, sesuai untuk pelbagai sistem operasi. 2. Menyokong operasi asas seperti membuat pangkalan data dan jadual, memasukkan, menanyakan, mengemas kini dan memadam data. 3. Menyediakan fungsi lanjutan seperti menyertai operasi dan subqueries. 4. Prestasi boleh ditingkatkan melalui pengindeksan, pengoptimuman pertanyaan dan pembahagian jadual. 5. Sokongan sokongan, pemulihan dan langkah keselamatan untuk memastikan keselamatan data dan konsistensi.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

Dreamweaver Mac版
Alat pembangunan web visual

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma