分布式消息系统尝试(rabbitmq, celery, redis)
最近在调整游戏的后台架构,之前因为需要快速出产品,所以整个代码都揉成一团,也基本没有做任何分层处理。现在服务器端的开发也开始逐渐招进来,所以打算打算换一套统一的架构,以后做新游戏只要做其中的业务逻辑即可。 其实之前在腾讯的时候,基本不会用到
最近在调整游戏的后台架构,之前因为需要快速出产品,所以整个代码都揉成一团,也基本没有做任何分层处理。现在服务器端的开发也开始逐渐招进来,所以打算打算换一套统一的架构,以后做新游戏只要做其中的业务逻辑即可。
其实之前在腾讯的时候,基本不会用到message queue这种,所有的分布式处理都是由自己写c++ server来互相通信的。这样的处理虽然开发量稍微大一点,但是性能和灵活性确实很高。
现在自己在外面做,虽然自己已经封装了一套server的框架出来,但是毕竟还有太多的轮子需要自己制造,所以就想到了之前一直有了解过celery,来看一下这种基于message queue的任务系统能达到什么性能。
RabbitMQ
celery首推的mq是rabbitmq,所以需要先安装一下:
在mac下用brew 安装:
brew install rabbitmq
安装成功之后,即可启动server了。
不过在这之前,我们先把后台管理的插件打开:
rabbitmq-plugins enable rabbitmq_management
之后执行如下命令,启动server:
rabbitmq-server
这个时候就可以通过?http://127.0.0.1:15672/?来访问后台管理端了,默认的用户名和密码是guest guest,可以自己在页面上修改。截图如下:
?
Redis
celery也支持redis作为broker和backend,所以redis也需要安装一下,这里就不赘述了?
Celery
安装命令为:
pip install celery
?
性能测试
新建 t.py:
from celery import Celery app = Celery(backend='amqp', broker='amqp://') @app.task def add(x, y): return x + y
以及测试文件 test.py:
import time from t import add t1 = time.time() result = add.delay(1, 2) print result.get() print time.time() - t1
?
启动celery worker:
celery -A t worker --loglevel=info -c 2
执行 python test.py 输出结果为:
0.545017004013
修改 t.py 为:
from celery import Celery app = Celery(backend='redis', broker='redis://') @app.task def add(x, y): return x + y
?
测试结果为:
0.603708028793
?
无论是rabbitmq还是redis,性能都慢的让人无法接受,最终还是放弃了用celery做任务分布的想法,还是老老实实的用server通信吧。
原文地址:分布式消息系统尝试(rabbitmq, celery, redis), 感谢原作者分享。

MySQL adalah sistem pengurusan pangkalan data relasi sumber terbuka, terutamanya digunakan untuk menyimpan dan mengambil data dengan cepat dan boleh dipercayai. Prinsip kerjanya termasuk permintaan pelanggan, resolusi pertanyaan, pelaksanaan pertanyaan dan hasil pulangan. Contoh penggunaan termasuk membuat jadual, memasukkan dan menanyakan data, dan ciri -ciri canggih seperti Operasi Join. Kesalahan umum melibatkan sintaks SQL, jenis data, dan keizinan, dan cadangan pengoptimuman termasuk penggunaan indeks, pertanyaan yang dioptimumkan, dan pembahagian jadual.

MySQL adalah sistem pengurusan pangkalan data sumber terbuka yang sesuai untuk penyimpanan data, pengurusan, pertanyaan dan keselamatan. 1. Ia menyokong pelbagai sistem operasi dan digunakan secara meluas dalam aplikasi web dan bidang lain. 2. Melalui seni bina pelanggan-pelayan dan enjin penyimpanan yang berbeza, MySQL memproses data dengan cekap. 3. Penggunaan asas termasuk membuat pangkalan data dan jadual, memasukkan, menanyakan dan mengemas kini data. 4. Penggunaan lanjutan melibatkan pertanyaan kompleks dan prosedur yang disimpan. 5. Kesilapan umum boleh disahpepijat melalui pernyataan yang dijelaskan. 6. Pengoptimuman Prestasi termasuk penggunaan indeks rasional dan pernyataan pertanyaan yang dioptimumkan.

MySQL dipilih untuk prestasi, kebolehpercayaan, kemudahan penggunaan, dan sokongan komuniti. 1.MYSQL Menyediakan fungsi penyimpanan dan pengambilan data yang cekap, menyokong pelbagai jenis data dan operasi pertanyaan lanjutan. 2. Mengamalkan seni bina pelanggan-pelayan dan enjin penyimpanan berganda untuk menyokong urus niaga dan pengoptimuman pertanyaan. 3. Mudah digunakan, menyokong pelbagai sistem operasi dan bahasa pengaturcaraan. 4. Mempunyai sokongan komuniti yang kuat dan menyediakan sumber dan penyelesaian yang kaya.

Mekanisme kunci InnoDB termasuk kunci bersama, kunci eksklusif, kunci niat, kunci rekod, kunci jurang dan kunci utama seterusnya. 1. Kunci dikongsi membolehkan urus niaga membaca data tanpa menghalang urus niaga lain dari membaca. 2. Kunci eksklusif menghalang urus niaga lain daripada membaca dan mengubah suai data. 3. Niat Kunci mengoptimumkan kecekapan kunci. 4. Rekod Rekod Kunci Kunci Rekod. 5. Gap Lock Locks Index Rakaman Gap. 6. Kunci kunci seterusnya adalah gabungan kunci rekod dan kunci jurang untuk memastikan konsistensi data.

Sebab -sebab utama prestasi pertanyaan MySQL yang lemah termasuk tidak menggunakan indeks, pemilihan pelan pelaksanaan yang salah oleh pengoptimasi pertanyaan, reka bentuk jadual yang tidak munasabah, jumlah data yang berlebihan dan persaingan kunci. 1. Tiada indeks menyebabkan pertanyaan perlahan, dan menambah indeks dapat meningkatkan prestasi dengan ketara. 2. Gunakan perintah Jelaskan untuk menganalisis pelan pertanyaan dan cari ralat pengoptimuman. 3. Membina semula struktur meja dan mengoptimumkan keadaan gabungan dapat meningkatkan masalah reka bentuk jadual. 4. Apabila jumlah data adalah besar, pembahagian dan strategi bahagian meja diterima pakai. 5. Dalam persekitaran konkurensi yang tinggi, mengoptimumkan urus niaga dan strategi mengunci dapat mengurangkan persaingan kunci.

Dalam pengoptimuman pangkalan data, strategi pengindeksan hendaklah dipilih mengikut keperluan pertanyaan: 1. Apabila pertanyaan melibatkan pelbagai lajur dan urutan syarat ditetapkan, gunakan indeks komposit; 2. Apabila pertanyaan melibatkan pelbagai lajur tetapi urutan syarat tidak ditetapkan, gunakan pelbagai indeks lajur tunggal. Indeks komposit sesuai untuk mengoptimumkan pertanyaan berbilang lajur, manakala indeks lajur tunggal sesuai untuk pertanyaan tunggal lajur.

Untuk mengoptimumkan pertanyaan perlahan MySQL, SlowQuerylog dan Performance_Schema perlu digunakan: 1. Dayakan SlowQueryLog dan tetapkan ambang untuk merakam pertanyaan perlahan; 2. Gunakan Performance_Schema untuk menganalisis butiran pelaksanaan pertanyaan, cari kesesakan prestasi dan mengoptimumkan.

MySQL dan SQL adalah kemahiran penting untuk pemaju. 1.MYSQL adalah sistem pengurusan pangkalan data sumber terbuka, dan SQL adalah bahasa standard yang digunakan untuk mengurus dan mengendalikan pangkalan data. 2.MYSQL menyokong pelbagai enjin penyimpanan melalui penyimpanan data yang cekap dan fungsi pengambilan semula, dan SQL melengkapkan operasi data yang kompleks melalui pernyataan mudah. 3. Contoh penggunaan termasuk pertanyaan asas dan pertanyaan lanjutan, seperti penapisan dan penyortiran mengikut keadaan. 4. Kesilapan umum termasuk kesilapan sintaks dan isu -isu prestasi, yang boleh dioptimumkan dengan memeriksa penyataan SQL dan menggunakan perintah menjelaskan. 5. Teknik pengoptimuman prestasi termasuk menggunakan indeks, mengelakkan pengimbasan jadual penuh, mengoptimumkan operasi menyertai dan meningkatkan kebolehbacaan kod.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan