我们知道,在PG中,每个relation,也就是表,都有好几个fork对应。存放主表数据的为ldquo;MAINrdquo; fork;管理空余空间的为
我们知道,在PG中,每个relation,也就是表,都有好几个fork对应。存放主表数据的为“MAIN” fork;管理空余空间的为“FSM” fork;存放可视化视图的为“visibility” fork。
那么PG又是如何将每个表的fork管理起来,并跟pg_class中的relfileno对应起来的呢?这可以分为两类:一类是常规表;一类是系统表。
1.常规表
假设我有一张表叫”tab_mvcc_test”,它在postgres数据库中。因此我们得先找到数据库目录。查pg_database,得到oid为“12896”。
接着去base目录下,找到相应的数据库目录。“12896”目录就是我们想要的。
然后从pg_class中,我们查到”tab_mvcc_test”的relfilenode为“16483”。
接着我们进入数据库目录“12896”,然后list一把,提到以下相关的三个文件。以“_fsm”后缀的就是Free Space Mapping文件。以”vm”后缀的就是visibility map。
而没有后缀的那个就是我们的主表数据文件,里面还存放了索引数据。
2.系统表
另外像系统的catalog表,如pg_class,它的refileno是”0“,又是什么原因呢?PG对于系统表处理,不能像常规表一样。这就有点类似于”鸡生蛋,还是蛋生鸡“。因为系统表是来管理常规表的。
PG对于这些catalog表,放到一个文件中去管理,将oid与relfileno做映射。这个文件就是著名的”pg_filenode.map“。这个文件的大小为512,,刚好是一个OS disk sector的大小。
PG做了对齐处理,在源码上用RelMapFile结构体与之对应。结构体大小为:62*8+4*4=496+16=512。也就是说这个文件最多存放62条系统catalog表的记录。
由于这个文件的重要性,刚好与disk sector大小对齐,减少文件crash的机率。
我们接下来把pg_filenode.map DUMP出来看一下,里面是什么数据:
第一个圈中的数据为PG文件头的魔法数据字,那么第二个圈中的,到底对应的是哪个catalog表呢?我们可以计算下:“4eb”对应十进制数据就是”1259“,刚好是pg_class的oid。
而后面的”3172”对应的就是12658。刚好是relfilenode。完美的对应了起来。
再得到文件如下:
记录数刚好14,跟上面图中两个红色圈之间的数字”000e“对起来。这个文件还存放了这些系统表对应的索引文件filenode。
------------------------------------华丽丽的分割线------------------------------------
CentOS 6.3环境下yum安装PostgreSQL 9.3
PostgreSQL缓存详述
Windows平台编译 PostgreSQL
Ubuntu下LAPP(Linux+Apache+PostgreSQL+PHP)环境的配置与安装
Ubuntu上的phppgAdmin安装及配置
CentOS平台下安装PostgreSQL9.3
PostgreSQL配置Streaming Replication集群
如何在CentOS 7/6.5/6.4 下安装PostgreSQL 9.3 与 phpPgAdmin
------------------------------------华丽丽的分割线------------------------------------
PostgreSQL 的详细介绍:请点这里
PostgreSQL 的下载地址:请点这里
本文永久更新链接地址:

Cardinality Indeks MySQL mempunyai kesan yang signifikan terhadap prestasi pertanyaan: 1. Indeks kardinaliti yang tinggi dapat lebih berkesan menyempitkan julat data dan meningkatkan kecekapan pertanyaan; 2. Indeks kardinaliti yang rendah boleh membawa kepada pengimbasan jadual penuh dan mengurangkan prestasi pertanyaan; 3. Dalam indeks bersama, urutan kardinaliti yang tinggi harus diletakkan di depan untuk mengoptimumkan pertanyaan.

Laluan pembelajaran MySQL termasuk pengetahuan asas, konsep teras, contoh penggunaan, dan teknik pengoptimuman. 1) Memahami konsep asas seperti jadual, baris, lajur, dan pertanyaan SQL. 2) Ketahui definisi, prinsip kerja dan kelebihan MySQL. 3) menguasai operasi CRUD asas dan penggunaan lanjutan, seperti indeks dan prosedur yang disimpan. 4) Biasa dengan debugging kesilapan biasa dan cadangan pengoptimuman prestasi, seperti penggunaan rasional indeks dan pertanyaan pengoptimuman. Melalui langkah -langkah ini, anda akan memahami sepenuhnya penggunaan dan pengoptimuman MySQL.

Aplikasi dunia nyata MySQL termasuk reka bentuk pangkalan data asas dan pengoptimuman pertanyaan kompleks. 1) Penggunaan Asas: Digunakan untuk menyimpan dan mengurus data pengguna, seperti memasukkan, menanyakan, mengemas kini dan memadam maklumat pengguna. 2) Penggunaan lanjutan: Mengendalikan logik perniagaan yang kompleks, seperti perintah dan pengurusan inventori platform e-dagang. 3) Pengoptimuman Prestasi: Meningkatkan prestasi dengan menggunakan indeks, jadual partisi dan cache pertanyaan.

Perintah SQL di MySQL boleh dibahagikan kepada kategori seperti DDL, DML, DQL, dan DCL, dan digunakan untuk membuat, mengubah suai, memadam pangkalan data dan jadual, memasukkan, mengemas kini, memadam data, dan melakukan operasi pertanyaan yang kompleks. 1. Penggunaan asas termasuk jadual penciptaan createtable, memasukkan data memasukkan, dan pilih data pertanyaan. 2. Penggunaan lanjutan melibatkan gabungan untuk Jadual Bergabung, Subqueries dan Groupby untuk Agregasi Data. 3. Kesilapan umum seperti kesilapan sintaks, jenis data yang tidak sepadan dan masalah kebenaran boleh disahpepijat melalui pemeriksaan sintaks, penukaran jenis data dan pengurusan kebenaran. 4. Cadangan Pengoptimuman Prestasi termasuk menggunakan indeks, mengelakkan pengimbasan jadual penuh, mengoptimumkan operasi gabungan dan menggunakan transaksi untuk memastikan konsistensi data.

InnoDB mencapai atomik melalui undolog, konsistensi dan pengasingan melalui mekanisme penguncian dan MVCC, dan kegigihan melalui redolog. 1) Atomicity: Gunakan Undolog untuk merekodkan data asal untuk memastikan urus niaga dapat dilancarkan kembali. 2) Konsistensi: Memastikan konsistensi data melalui penguncian peringkat baris dan MVCC. 3) Pengasingan: Menyokong pelbagai tahap pengasingan, dan RepeatableRead digunakan secara lalai. 4) Kegigihan: Gunakan redolog untuk merekodkan pengubahsuaian untuk memastikan data disimpan untuk masa yang lama.

Kedudukan MySQL dalam pangkalan data dan pengaturcaraan sangat penting. Ia adalah sistem pengurusan pangkalan data sumber terbuka yang digunakan secara meluas dalam pelbagai senario aplikasi. 1) MySQL menyediakan fungsi penyimpanan data, organisasi dan pengambilan data yang cekap, sistem sokongan web, mudah alih dan perusahaan. 2) Ia menggunakan seni bina pelanggan-pelayan, menyokong pelbagai enjin penyimpanan dan pengoptimuman indeks. 3) Penggunaan asas termasuk membuat jadual dan memasukkan data, dan penggunaan lanjutan melibatkan pelbagai meja dan pertanyaan kompleks. 4) Soalan -soalan yang sering ditanya seperti kesilapan sintaks SQL dan isu -isu prestasi boleh disahpepijat melalui arahan jelas dan log pertanyaan perlahan. 5) Kaedah pengoptimuman prestasi termasuk penggunaan indeks rasional, pertanyaan yang dioptimumkan dan penggunaan cache. Amalan terbaik termasuk menggunakan urus niaga dan preparedStatemen

MySQL sesuai untuk perusahaan kecil dan besar. 1) Perniagaan kecil boleh menggunakan MySQL untuk pengurusan data asas, seperti menyimpan maklumat pelanggan. 2) Perusahaan besar boleh menggunakan MySQL untuk memproses data besar dan logik perniagaan yang kompleks untuk mengoptimumkan prestasi pertanyaan dan pemprosesan transaksi.

InnoDB secara berkesan menghalang pembacaan hantu melalui mekanisme utama. 1) Kekunci seterusnya menggabungkan kunci baris dan kunci jurang untuk mengunci rekod dan jurang mereka untuk mengelakkan rekod baru daripada dimasukkan. 2) Dalam aplikasi praktikal, dengan mengoptimumkan pertanyaan dan menyesuaikan tahap pengasingan, persaingan kunci dapat dikurangkan dan prestasi konkurensi dapat ditingkatkan.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod