찾다
기술 주변기기일체 포함자율 주차에 대한 일반 연구, 업계 표준 통합, 추세 평가 및 시스템 도입

앞에 적음

자동 주차 시스템은 차량이 스스로 주차 공간을 찾아 수동 개입 없이도 정확한 주차를 완료할 수 있다는 의미입니다. 또한 사용자 요구에 따라 지정된 위치로 이동할 수도 있습니다. 이 기술이 성숙해지면 주차 공간을 찾는 데 오랜 시간 시간을 낭비하는 등 주차 과정에서 사람들이 겪는 불편함은 물론, 주차 공간을 찾을 때 발생할 수 있는 차량 충돌, 마찰 등의 안전 문제도 크게 완화될 것이다.

현재 많은 기술 기업과 대학 연구실에서 자율 주차 분야를 탐구하고 있습니다. Mercedes-Benz, Bosch 등의 회사는 주차 인프라를 구축했습니다. NVIDIA는 주차장용 자동 운전 알고리즘과 주차 공간 감지 방법을 개발하고 있으며 BMW도 생산 차량에 자동 주차 모듈을 설치했습니다.

자동주차 기술에 대한 업계의 폭넓은 수요를 고려하여, 자동주차 시스템 개발 현황에 대한 체계적인 조사를 실시했습니다. 자동 주차 시스템의 업계 표준 동향, 성능 평가 지표, 자동 주차 시스템의 각 하위 모듈에 설계된 기술 등을 포함합니다.

자동주차 산업의 최신 표준 동향

현재의 자동주차 시스템이 산업계와 학계의 폭넓은 관심을 받으면서 다양한 국가와 기업에서 자동주차 기술을 끊임없이 개발하고 있습니다. 따라서 자동 주차 기술에 대한 표준을 제정하는 것이 특히 중요합니다. 제정된 기술기준으로는 지리정보, 실외위치확인, 실내공간위치확인, 주차기준, 차량통신기준 등이 있으며, 구체적인 기준은 아래 표와 같습니다.

자율 주차에 대한 일반 연구, 업계 표준 통합, 추세 평가 및 시스템 도입

자동 주차 산업의 관련 표준

  • 지리 정보 및 위치 표준은 ISO 14825, ISO 17572 및 ISO TC204 177438 등을 포함하여 실외 공간의 명명, 정의 및 형식에 대한 원칙과 기초를 설정합니다.
  • ISO TC211 및 OGC 표준을 포함하여 실내 공간 측위의 표준화도 공식화되고 있습니다.
  • ISO/DIS 16787 APS 주차 표준은 주차에 필요한 정보 유형을 제안하고 차량 제어를 위한 기술 명칭을 정의합니다. 또한 이 표준은 주차 보조 시스템을 구현하고 차량의 조향 제어 기능을 수행하는 데 필요한 기능을 정의합니다.

자동주차장치 평가기준

현재 자동주차장치 평가는 자동주차부분 평가자동주차부분 평가 두 부분으로 이루어져 있습니다.

자율주행 부품 평가 기준

자율주행 기술 평가는 자동차공학회에서 제정한 '자율주행 기술단계' 기준을 따릅니다. 이 기준은 자율주행 기술을 기술수준과 제어력을 기준으로 6단계로 구분합니다. 주제와 운전 능력. 각 수준을 보다 쉽게 ​​평가할 수 있도록 개발 중인 ISO/WD 34501 및 ISO/WD 34502 표준이 제안되었습니다. ISO/WD 34501 표준은 레벨 3 시스템의 테스트 시나리오에 대한 용어 및 정의에 적용되는 반면, ISO/WD 34502 표준은 테스트 시나리오 및 안전 평가 프로세스에 대한 지침을 제공합니다. 이러한 표준을 제정하는 목적은 자율주행 기술 개발 및 적용에 대한 통일된 평가 기준을 제공하고 자율주행 기술 개발을 촉진하는 것입니다.

자동주차부분 평가기준

현재 자동주차 기술이 많은 관심을 받고 있음에도 불구하고, 국제표준 개발은 아직 초기 단계입니다. 자율주행 평가기준과 달리 자율주차 기술수준은 주로 개발자 평가기준으로 측정된다.

다음 표는 교통 상황 시나리오 시스템에서 자율 주차 시나리오의 예를 보여줍니다. 주차 시나리오는 성능 수준에 따라 구분됩니다.

자율 주차에 대한 일반 연구, 업계 표준 통합, 추세 평가 및 시스템 도입

자동주차레벨 구분

교통상황 시나리오의 시스템 평가는 자율주행과 주차 시나리오 두 부분으로 구성되며, 자동차공학회에서 정의한 '자율주행 기술단계'를 활용하여 자율주행 능력을 나타냅니다. 주차. 현재 시스템에는 세 가지 수준이 있습니다.

  • 레벨 2(Lv2): 주차 보조 시스템이라고 하며, 사람들이 보다 편리하게 주차할 수 있도록 도와주는 시스템입니다. Lv2 레벨의 차량에는 일반적으로 장애물 거리 경고 시스템과 후방 카메라가 장착됩니다.
  • 레벨 3(Lv3): 레벨 3은 지정된 시나리오에서 자동 주차를 실현할 수 있습니다. 예를 들어, 차고 주차와 같은 간단한 주차 시나리오가 있습니다.
  • 레벨 4(Lv4): Lv3의 모든 시나리오는 Lv4에서 수행할 수 있습니다. 또한, 차량이 장애물을 만나면 정지하거나 장애물을 회피한 후 목적지로 복귀할 수 있습니다.

자동 주차 시스템에 대한 자세한 설명

현재 자동 주차 시스템은 크게 아래 그림과 같이 검색 운전 과정, 자동 주차 과정, 운전 복귀 과정 세 부분으로 구성됩니다. . 먼저 각 프로세스에 대한 전반적인 소개를 한 후, 각 프로세스의 현재 개발 동향을 소개합니다.

자율 주차에 대한 일반 연구, 업계 표준 통합, 추세 평가 및 시스템 도입

자동 주차 시스템의 작업 흐름

검색 운전 프로세스

검색 운전 프로세스의 최종 목표는 자동차가 주차장 내 주차 공간을 자율적으로 찾는 것이므로 이 프로세스에는 포지셔닝, 충돌 방지주차 공간 감지 기술.

측위 기술 소개

자동 주차 시스템에서는 GPS나 차량 자체의 IMU 센서를 이용해 차량의 속도와 자세를 확인하고 차량의 위치 추정 오차를 보정할 수 있습니다. 그러나 일부 실내 장면에서는 GPS 신호를 수신할 수 없습니다. 따라서 자율주행차에는 지원을 위한 카메라, 라이더, 밀리미터파 레이더를 장착해야 합니다. 아래 사진은 차량에 장착된 일부 센서 정보를 소개한 사진입니다.

자율 주차에 대한 일반 연구, 업계 표준 통합, 추세 평가 및 시스템 도입

자동 주차 차량에 장착된 센서 정보 소개

  • 라이다 센서는 레이저를 이용해 물체를 감지합니다. 현재 인기 있는 라이더는 주로 16, 32, 64, 128라인의 라이더로 구분됩니다. 측정 범위는 약 200m이고 수직 시야는 30~50도입니다.
  • 카메라 센서는 크게 단안, 쌍안, 어안 유형으로 나눌 수 있습니다. 일반적으로 자율주행차에는 수평 시야각이 90~210도, 수직 시야각이 90~180도인 카메라가 장착되어 있습니다.
  • 밀리미터파 레이더는 거리에 따라 단거리 레이더와 장거리 레이더로 나눌 수 있습니다. 이 중 단거리 레이더의 범위는 5m 정도, 수평 시야각은 5~20도, 수직 시야각은 10~35도이다. 장거리 레이더의 범위는 약 200m이며 수평 및 수직 시야각은 35~80도입니다.

이러한 다양한 센서에서 수집된 정보를 얻은 후 SLAM 매핑 기술을 사용하여 자율주행차 주변 환경을 재구성하여 차량의 위치를 ​​파악할 수 있습니다. SLAM 매핑 기술은 크게 두 가지로 나눌 수 있다. 직접 매핑 방식: 센서가 움직일 때 변화하는 데이터의 세기를 추적해 센서의 자세를 추정하는 방식이다. 그러나 이러한 방식은 조명 변화에 쉽게 영향을 받고 재배치가 불가능하기 때문에 현재 매핑 방식은 이러한 방식을 기반으로 하는 경우가 거의 없습니다.

    특징 기반 매핑 방법: 이 유형의 방법은 먼저 센서 정보로부터 주변 객체의 특징점을 얻습니다. 동일한 객체로부터 수신된 특징점을 서로 다른 두 개의 센서 좌표에 투영하고, 투영된 점의 기하학적 관계를 계산하여 대상의 위치를 ​​추정합니다.
충돌 방지 기술 소개

자동 주차 시스템의 주요 적용 시나리오는 주차장에 있고 주차장에 많은 차량이 주차되어 있으므로 충돌 방지 기술은 매우 중요합니다. . 충돌 방지 기술에는 초음파 센서

,

단파 레이더 센서, lidar 센서, 카메라 센서가 주로 사용됩니다. 음향 및 레이더 센서는 정확한 거리 측정을 위해 주로 사용됩니다. 카메라 센서는 주로 연속된 이미지에서 동일한 물체의 위치 차이를 이용해 깊이 거리를 추정합니다.

주차 공간 감지 기술

주차 공간 감지는 검색 및 운전 과정에서 지속적으로 수행되며 일반적으로 전통적인 컴퓨터 비전, 딥 러닝 및 두 가지 방법의 하이브리드 구현이 포함됩니다.

기존 컴퓨터 비전은 아래 그림과 같이 주로 주차 공간 라인 감지, 특징점 감지 등 주차 공간의 모양을 지정하고 식별합니다.

주차 공간 형태의 예자율 주차에 대한 일반 연구, 업계 표준 통합, 추세 평가 및 시스템 도입

딥러닝의 급속한 발전으로 인해 현재 주차 공간 탐지에는 CNN 네트워크 기반의 방법이 널리 사용되고 있습니다. 아래 그림은 주차 공간 감지를 위한 대표적인 컨볼루션 신경망 구조를 나타냅니다. 컨벌루션 레이어는 입력 이미지의 특징을 학습하고, 특징 데이터는 완전 연결 레이어를 통해 출력됩니다. 이는 완전 지도 학습 프로세스이므로 출력은 훈련 데이터의 레이블에 의해 직접 결정됩니다.

컨벌루션 신경망 기반 주차 공간 탐지 프로세스자율 주차에 대한 일반 연구, 업계 표준 통합, 추세 평가 및 시스템 도입

자동 주차 프로세스

이전 단계의 검색 및 주행 프로세스에서 빈 주차 공간이 발견되면 시스템이 자동 주차 프로세스를 호출합니다. 일반적으로 우리는 자율 주차 프로세스를 구현하기 위해 경로 생성 방법을 사용합니다. 현재 주류 경로 생성 방법에는 크게 알고리즘 기반 방법과 강화학습 기반 방법이 있다.

알고리즘 기반 접근 방식에서는 주차 공간까지의 경로 위치와 모양, 차량의 현재 위치를 계산합니다. 적합한 주차 경로를 계산하기 위해 알고리즘에는 최적 제어 문제, 그리드 기반 경로 계획 방법, 랜덤 트리의 신속한 탐색 등의 알고리즘이 포함됩니다.

강화 학습 기반 방법은 자율 주차 시뮬레이터에서 자율 주차 프로세스를 위한 최적의 경로를 생성할 수 있습니다. 자율 주차 시뮬레이터에서 차량은 일반적인 주차 절차를 학습합니다. 이 학습 방법은 아래 그림과 같이 경로 생성 과정과 평가를 반복하여 주차 정확도가 가장 높은 최적의 경로를 지속적으로 획득합니다.

자율 주차에 대한 일반 연구, 업계 표준 통합, 추세 평가 및 시스템 도입

자동 주차의 역주차 과정

주행 과정으로 복귀

주행 과정으로 복귀는 자율주행차가 주차 공간에 진입하여 대기할 때 사용자가 차량을 호출하여 이동하게 하는 것을 의미합니다. 사용자가 지정한 장소로 이동합니다. 이 과정에서 경로 추적 기술을 사용해야 합니다.

현재 경로 추적 기술에는 이동 경로를 추적하는 방법과 수정된 경로를 추적하는 방법이 있습니다. 그러나 두 방법 모두 유사한 차량 제어 알고리즘을 사용하므로 자세한 내용은 논문 [1-2]를 참조하시기 바랍니다. 일반적인 아이디어는 차량의 현재 위치와 조향 각도 조건을 고려하여 생성된 경로를 따라 차량을 이동하도록 제어 명령을 실행하는 것입니다.

결론

자동 주차 기술에 대한 수요가 증가함에 따라 다양한 국가와 제조업체에서 자동 주차 시스템 개발에 활발히 참여하고 있습니다. 본 글에서는 자동주차기술의 급속한 발전을 고려하여 자동주차시스템의 표준화 동향과 평가기준, 다양한 구성요소를 정리하고 모든 분들께 도움이 되기를 바랍니다~

자율 주차에 대한 일반 연구, 업계 표준 통합, 추세 평가 및 시스템 도입

원본 링크: https://mp.weixin.qq.com/s/UPwW0E8LTX5V79GK12HF_Q

위 내용은 자율 주차에 대한 일반 연구, 업계 표준 통합, 추세 평가 및 시스템 도입의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
AI 게임 개발AI 게임 개발May 02, 2025 am 11:17 AM

격변 게임 : AI 에이전트와의 게임 개발 혁명 Blizzard 및 Obsidian과 같은 업계 대기업의 재향 군인으로 구성된 게임 개발 스튜디오 인 Upheaval은 혁신적인 AI 구동 Platfor로 게임 제작에 혁명을 일으킬 준비가되어 있습니다.

Uber는 Robotaxi 상점이되기를 원합니다. 제공자가 그들을 허락할까요?Uber는 Robotaxi 상점이되기를 원합니다. 제공자가 그들을 허락할까요?May 02, 2025 am 11:16 AM

Uber의 Robotaxi 전략 : 자율 주행 차량을위한 승차원 생태계 최근 Curbivore 컨퍼런스에서 Uber의 Richard Willder는 Robotaxi 제공 업체를위한 승마 플랫폼이되기위한 전략을 공개했습니다. 그들의 지배적 인 위치를 활용합니다

비디오 게임을하는 AI 요원은 미래의 로봇을 변화시킬 것입니다비디오 게임을하는 AI 요원은 미래의 로봇을 변화시킬 것입니다May 02, 2025 am 11:15 AM

비디오 게임은 특히 자율적 인 에이전트 및 실제 로봇의 개발에서 최첨단 AI 연구를위한 귀중한 테스트 근거로 입증되며, 인공 일반 정보 (AGI)에 대한 탐구에 잠재적으로 기여할 수 있습니다. 에이

스타트 업 산업 단지, VC 3.0 및 James Currier 's Manifesto스타트 업 산업 단지, VC 3.0 및 James Currier 's ManifestoMay 02, 2025 am 11:14 AM

진화하는 벤처 캐피탈 환경의 영향은 미디어, 재무 보고서 및 일상적인 대화에서 분명합니다. 그러나 투자자, 신생 기업 및 자금에 대한 구체적인 결과는 종종 간과됩니다. 벤처 캐피탈 3.0 : 패러다임

Adobe 업데이트 Adobe Max London 2025에서 Creative Cloud and FireflyAdobe 업데이트 Adobe Max London 2025에서 Creative Cloud and FireflyMay 02, 2025 am 11:13 AM

Adobe Max London 2025는 Creative Cloud and Firefly에 상당한 업데이트를 제공하여 접근성 및 생성 AI로의 전략적 전환을 반영했습니다. 이 분석에는 Adobe Leadership과의 사전 이벤트 브리핑의 통찰력이 포함되어 있습니다. (참고 : Adob

모든 메타는 Llamacon에서 발표했습니다모든 메타는 Llamacon에서 발표했습니다May 02, 2025 am 11:12 AM

Meta의 Llamacon 발표는 OpenAi와 같은 폐쇄 된 AI 시스템과 직접 경쟁하도록 설계된 포괄적 인 AI 전략을 보여 주며 동시에 오픈 소스 모델을위한 새로운 수익원을 만듭니다. 이 다각적 인 접근법은 Bo를 대상으로합니다

AI가 정상적인 기술에 지나지 않는다는 제안에 대한 양조 논쟁AI가 정상적인 기술에 지나지 않는다는 제안에 대한 양조 논쟁May 02, 2025 am 11:10 AM

이 결론에 대한 인공 지능 분야에는 심각한 차이가 있습니다. 어떤 사람들은 "황제의 새로운 옷"을 폭로 할 때라고 주장하는 반면, 인공 지능은 단지 일반적인 기술이라는 생각에 강력하게 반대합니다. 논의합시다. 이 혁신적인 AI 혁신에 대한 분석은 다양한 영향력있는 AI 복잡성을 식별하고 설명하는 것을 포함하여 AI 분야의 최신 발전을 다루는 진행중인 Forbes 열의 일부입니다 (링크를 보려면 여기를 클릭하십시오). 공통 기술로서의 인공 지능 첫째,이 중요한 토론을위한 토대를 마련하기 위해서는 몇 가지 기본 지식이 필요합니다. 현재 인공 지능을 발전시키는 데 전념하는 많은 연구가 있습니다. 전반적인 목표는 인공 일반 지능 (AGI) 및 가능한 인공 슈퍼 인텔리전스 (AS)를 달성하는 것입니다.

모델 시민, AI 가치가 다음 비즈니스 척도 인 이유모델 시민, AI 가치가 다음 비즈니스 척도 인 이유May 02, 2025 am 11:09 AM

회사의 AI 모델의 효과는 이제 핵심 성과 지표입니다. AI 붐 이후 생일 초대장 작성부터 소프트웨어 코드 작성에 이르기까지 생성 AI는 모든 데 사용되었습니다. 이로 인해 언어 모드가 확산되었습니다

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기