집 >데이터 베이스 >MySQL 튜토리얼 >MySQL和MongoDB设计实例对比_MySQL
MongoDB
本文转载自火丁笔记,文章举了一个数据库设计的例子,对MySQL和MongoDB两种存储工具,分别进行了数据库结构设计,在MongoDB的设计上,利用了MongoDB的 schema-free的特性。
虽然文中的例子不一定是最优的选择。但分享此文,希望提醒大家,换个存储,不仅是换一个存储,更重要的是换一套思维。
MySQL是关系型数据库中的明星,MongoDB是文档型数据库中的翘楚。下面通过一个设计实例对比一下二者:假设我们正在维护一个手机产品库,里面除了包含手机的名称,品牌等基本信息,还包含了待机时间,外观设计等参数信息,应该如何存取数据呢?
如果使用MySQL话,手机的基本信息单独是一个表,另外由于不同手机的参数信息差异很大,所以还需要一个参数表来单独保存。
CREATE TABLE IF NOT EXISTS `mobiles` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `name` VARCHAR(100) NOT NULL, `brand` VARCHAR(100) NOT NULL, PRIMARY KEY (`id`)); CREATE TABLE IF NOT EXISTS `mobile_params` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `mobile_id` int(10) unsigned NOT NULL, `name` varchar(100) NOT NULL, `value` varchar(100) NOT NULL, PRIMARY KEY (`id`)); INSERT INTO `mobiles` (`id`, `name`, `brand`) VALUES(1, 'ME525', '摩托罗拉'),(2, 'E7' , '诺基亚'); INSERT INTO `mobile_params` (`id`, `mobile_id`, `name`, `value`) VALUES(1, 1, '待机时间', '200'),(2, 1, '外观设计', '直板'),(3, 2, '待机时间', '500'),(4, 2, '外观设计', '滑盖');
注:为了演示方便,没有严格遵守关系型数据库的范式设计。
如果想查询待机时间大于100小时,并且外观设计是直板的手机,需按照如下方式查询:
SELECT * FROM `mobile_params` WHERE name = '待机时间' AND value > 100;SELECT * FROM `mobile_params` WHERE name = '外观设计' AND value = '直板';
注:参数表为了方便,把数值和字符串统一保存成字符串,实际使用时,MySQL允许在字符串类型的字段上进行数值类型的查询,只是需要进行类型转换,多少会影响一点性能。
两条SQL的结果取交集得到想要的MOBILE_IDS,再到mobiles表查询即可:
SELECT * FROM `mobiles` WHERE mobile_id IN (MOBILE_IDS)
如果使用MongoDB的话,虽然理论上可以采用和MySQL一样的设计方案,但那样的话就显得无趣了,没有发挥出MongoDB作为文档型数据库的优点,实际上使用MongoDB的话,和MySQL相比,形象一点来说,可以合二为一:
db.getCollection("mobiles").ensureIndex({ "params.name": 1, "params.value": 1}); db.getCollection("mobiles").insert({ "_id": 1, "name": "ME525", "brand": "摩托罗拉", "params": [ {"name": "待机时间", "value": 200}, {"name": "外观设计", "value": "直板"} ]}); db.getCollection("mobiles").insert({ "_id": 2, "name": "E7", "brand": "诺基亚", "params": [ {"name": "待机时间", "value": 500}, {"name": "外观设计", "value": "滑盖"} ]});
如果想查询待机时间大于100小时,并且外观设计是直板的手机,需按照如下方式查询:
db.getCollection("mobiles").find({ "params": { $all: [ {$elemMatch: {"name": "待机时间", "value": {$gt: 100}}}, {$elemMatch: {"name": "外观设计", "value": "直板"}} ] }});
注:查询中用到的$all,$elemMatch等高级用法的详细介绍请参考官方文档中相关说明。
MySQL需要多个表,多次查询才能搞定的问题,MongoDB只需要一个表,一次查询就能搞定,对比完成,相对MySQL而言,MongoDB显得更胜一筹,至少本例如此。