Intel® Extension for Transformers[1]는 Intel® 아키텍처 플랫폼, 특히 4세대 Intel® Xeon® 확장 가능 프로세서(코드명 Sapphire Rapids[2)를 기반으로 할 수 있는 Intel에서 출시한 혁신적인 툴킷입니다. ], SPR)은 Transformer 기반 LLM(대형 언어 모델)을 크게 가속화합니다. 주요 기능은 다음과 같습니다.
이 기사에서는 LLM 추론 런타임 ("LLM 런타임"이라고 함) 과 Transformer 기반 API를 사용하여 Intel® Xeon® 확장 가능한 프로세서에서 보다 효율적인 LLM을 구현하는 방법에 중점을 둘 것입니다. 채팅 시나리오에서 LLM의 적용 문제를 처리합니다.
인텔® Extension for Transformers에서 제공하는 LLM 런타임[8]은 가볍지만 효율적인 LLM 추론 런타임으로, GGML[9]에서 영감을 얻었으며 llama.cpp[와 호환됩니다. 10]은 호환되며 다음과 같은 기능을 가지고 있습니다.
다시 작성해야 하는 내용은 다음과 같습니다. △그림 1. Transformers용 Intel® Extension의 LLM 런타임의 단순화된 아키텍처 다이어그램
Transformer 기반 사용 CPU에 구현된 API LLM Efficient Inference
from transformers import AutoTokenizer, TextStreamerfrom intel_extension_for_transformers.transformers import AutoModelForCausalLMmodel_name = "Intel/neural-chat-7b-v3-1” prompt = "Once upon a time, there existed a little girl,"tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)inputs = tokenizer(prompt, return_tensors="pt").input_idsstreamer = TextStreamer(tokenizer)model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=True)outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)
기본 설정은 가중치를 4비트로 저장하고 계산을 8비트로 수행합니다. 그러나 다양한 계산 데이터 유형(dtype)과 가중치 데이터 유형 조합도 지원하며 사용자는 필요에 따라 설정을 수정할 수 있습니다. 이 기능을 사용하는 방법에 대한 샘플 코드는 다음과 같습니다.
from transformers import AutoTokenizer, TextStreamerfrom intel_extension_for_transformers.transformers import AutoModelForCausalLM, WeightOnlyQuantConfigmodel_name = "Intel/neural-chat-7b-v3-1” prompt = "Once upon a time, there existed a little girl,"woq_config = WeightOnlyQuantConfig(compute_dtype="int8", weight_dtype="int4")tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)inputs = tokenizer(prompt, return_tensors="pt").input_idsstreamer = TextStreamer(tokenizer)model = AutoModelForCausalLM.from_pretrained(model_name,quantization_cnotallow=woq_config)outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)
성능 테스트
추론 성능 테스트 결과는 아래 표와 같습니다. 입력 크기는 32, 출력 크기는 32, 빔은 1
위의 표 2에 따르면: 첫 번째 토큰이든 다음 토큰이든 4세대 Intel® Xeon® 확장 가능 프로세서에서 실행되는 llama.cpp와 비교할 때 LLM 런타임은 지연을 크게 줄일 수 있으며 첫 번째 토큰의 추론 속도를 크게 줄일 수 있습니다. 토큰과 다음 토큰은 각각 최대 40배 [a](Baichuan-13B, 입력은 1024) 및 2.68배 [b](MPT-7B, 입력은 1024)까지 증가합니다. llama.cpp 테스트에서는 기본 코드 베이스 [10]를 사용합니다. 표 1과 표 2의 테스트 결과에 따르면 4세대에서도 실행되는 llama.cpp와 비교할 때
Intel® Xeon®확장 가능한 프로세서인 LLM Runtime은 여러 일반적인 성능을 크게 향상시킬 수 있다는 결론을 내릴 수 있습니다. LLM: 입력 크기가 1024이면 3.58~21.5배의 개선이 달성되고, 입력 크기가 32이면 1.76~3.43배의 개선이 달성됩니다[c]. 정확도 테스트
Intel®Extension for Transformers는 Intel® Neural Compressor에서 SignRound[11], RTN 및 GPTQ[12]와 같은 양자화 방법을 활용하고 Lambada_openai, piqa, winogrande 및 hellaswag 데이터 세트를 사용할 수 있습니다. 검증된 INT4 추론 정확성. 아래 표는 테스트 결과 평균을 FP32 정확도와 비교합니다.
. 더 많은 고급 기능: 더 많은 시나리오에서 LLM의 애플리케이션 요구 사항을 충족합니다.
그러나 LLM 런타임의 장점은 더 나은 성능과 정확성일 뿐만 아니라 채팅 응용 프로그램 시나리오에서 기능을 향상하고 LLM이 채팅 시나리오에서 발생할 수 있는 다음 응용 프로그램 딜레마를 해결하기 위해 많은 노력을 기울였습니다.
대화는 LLM 추론뿐만 아니라 대화 기록도 유용합니다.
두 번째 및 세 번째 질문과 관련하여 스트리밍 LLM(Steaming LLM)을
Intel®Extension for Transformers에 통합하여 메모리 사용을 크게 최적화하고 추론 지연 시간을 줄일 수 있습니다. 스트리밍 LLM
을 결합하여 Attention 계산의 안정성을 향상시키고 롤링 KV 캐시 토큰의 도움으로 최신 상태를 유지합니다. 언어 모델링에 매우 중요합니다. 설계는 매우 유연하며 회전 위치 인코딩 RoPE 및 상대 위치 인코딩 ALiBi를 활용할 수 있는 자동 회귀 언어 모델에 원활하게 통합될 수 있습니다.
게다가 라마와도 다릅니다. cpp 에서 이 최적화 계획은 스트리밍 LLM 전략을 향상시키기 위해 "n_keep" 및 "n_discard"와 같은 새로운 매개변수도 추가합니다. 사용자는 "n_keep" 매개변수를 사용하여 KV 캐시에 보관할 토큰 수를 지정하고, "n_discard" 매개변수를 사용하여 생성된 토큰 중 삭제할 수를 결정할 수 있습니다. 성능과 정확성의 균형을 높이기 위해 시스템은 기본적으로 KV 캐시에 있는 최신 토큰 번호의 절반을 삭제합니다
동시에 성능을 더욱 향상시키기 위해 스트리밍 LLM도 MHA 융합 모드에 추가했습니다. 모델이 RoPE(회전 위치 인코딩)를 사용하여 위치 임베딩을 구현하는 경우, 이전에 생성되어 폐기되지 않은 토큰에 대한 작업을 수행하지 않도록 기존 K-Cache에 "시프트 작업"만 적용하면 됩니다. 이 방법은 긴 텍스트를 생성할 때 전체 컨텍스트 크기를 최대한 활용할 뿐만 아니라 KV 캐시 컨텍스트가 완전히 채워질 때까지 추가 오버헤드가 발생하지 않습니다.
“shift operation”依赖于旋转的交换性和关联性,或复数乘法。例如:如果某个token的K-张量初始放置位置为m并且旋转了m×θi for i ∈ [0,d/2),那么当它需要移动到m-1这个位置时,则可以旋转回到(-1)×θi for i ∈ [0,d/2)。这正是每次舍弃n_discard个token的缓存时发生的事情,而此时剩余的每个token都需要“移动”n_discard个位置。下图以“n_keep=4、n_ctx=16、n_discard=1”为例,展示了这一过程。
△图3.Ring-Buffer KV-Cache和Shift-RoPE工作原理
需要注意的是:融合注意力层无需了解上述过程。如果对K-cache和V-cache进行相同的洗牌,注意力层会输出几乎相同的结果(可能存在因浮点误差导致的微小差异)。
您可以使用下面的代码来启动Streaming LLM:
from transformers import AutoTokenizer, TextStreamer from intel_extension_for_transformers.transformers import AutoModelForCausalLM, WeightOnlyQuantConfig model_name = "Intel/neural-chat-7b-v1-1" # Hugging Face model_id or local model woq_config = WeightOnlyQuantConfig(compute_dtype="int8", weight_dtype="int4") prompt = "Once upon a time, a little girl"tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) inputs = tokenizer(prompt, return_tensors="pt").input_ids streamer = TextStreamer(tokenizer)model = AutoModelForCausalLM.from_pretrained(model_name, quantization_cnotallow=woq_config, trust_remote_code=True) # Recommend n_keep=4 to do attention sinks (four initial tokens) and n_discard=-1 to drop half rencetly tokens when meet length threshold outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300, ctx_size=100, n_keep=4, n_discard=-1)
本文基于上述实践经验,提供了一个在英特尔® 至强® 可扩展处理器上实现高效的低位(INT4)LLM推理的解决方案,并且在一系列常见LLM上验证了其通用性以及展现了其相对于其他基于CPU的开源解决方案的性能优势。未来,我们还将进一步提升CPU张量库和跨节点并行性能。
欢迎您试用英特尔® Extension for Transformers[1],并在英特尔® 平台上更高效地运行LLM推理!也欢迎您向代码仓库(repository)提交修改请求 (pull request)、问题或疑问。期待您的反馈!
在此致谢为此篇文章做出贡献的英特尔公司人工智能资深经理张瀚文及工程师许震中、余振滔、刘振卫、丁艺、王哲、刘宇澄。
[a]根据表2 Baichuan-13B的首个token测试结果计算而得。
[b]根据表2 MPT-7B的下一个token测试结果计算而得。
[c]当输入大小为1024时,整体性能=首个token性能+1023下一个token性能;当输入大小为32时,整体性能=首个token性能+31下一个token性能。
위 내용은 툴킷을 사용하여 대규모 모델 추론 성능을 40배 향상의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!