问题描述
一个用户反映先线一个SQL语句执行时间慢得无法接受。SQL语句看上去很简单(本文描述中修改了表名和字段名):
SELECT count(*) FROM a JOIN b ON a.`S` = b.`S` WHERE a.`L` > '2014-03-30 00:55:00' AND a.`L`
且查询需要的字段都建了索引,表结构如下:
CREATE TABLE `a` ( `L` timestamp NOT NULL DEFAULT '2000-01-01 00:00:00', `I` varchar(32) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL, `A` varchar(32) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL, `S` varchar(64) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL, `F` tinyint(4) DEFAULT NULL, `V` varchar(256) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT '', `N` varchar(64) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL, KEY `IX_L` (`L`), KEY `IX_I` (`I`), KEY `IX_S` (`S`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; CREATE TABLE `b` ( `R` timestamp NOT NULL DEFAULT '2000-01-01 00:00:00', `V` varchar(32) DEFAULT NULL, `U` varchar(32) DEFAULT NULL, `C` varchar(16) DEFAULT NULL, `S` varchar(64) DEFAULT NULL, `I` varchar(64) DEFAULT NULL, `E` bigint(32) DEFAULT NULL, `ES` varchar(128) DEFAULT NULL, KEY `IX_R` (`R`), KEY `IX_C` (`C`), KEY `IX_S` (`S`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
从语句看,这个查询计划很自然的,就应该是先用a作为驱动表,先后使用 a.L和b.S这两个索引。而实际上explain的结果却是:
+----+-------------+-------+-------+---------------+------+---------+----------+---------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------+---------------+------+---------+----------+---------+-------------+ | 1 | SIMPLE | b | index | IX_S | IX_S | 195 | NULL | 1038165 | Using index | | 1 | SIMPLE | a | ref | IX_L,IX_S | IX_S | 195 | test.b.S | 1 | Using where | +----+-------------+-------+-------+---------------+------+---------+----------+---------+-------------+
分析
从explain的结果看,查询用了b作为驱动表。
上一篇文章我们介绍到,MySQL选择jion顺序是分别分析各种join顺序的代价后,选择最小代价的方法。
这个join只涉及到两个表,自然也与optimizer_search_depth无关。于是我们的问题就是,我们预期的那个join顺序的为什么没有被选中?
MySQL Tips: MySQL提供straight_join语法,强制设定连接顺序。
explain SELECT count(*) FROM a straight_join b ON a.`S` = b.`S` WHERE a.`L` > '2014-03-30 00:55:00' AND a.`L` < '2014-03-30 01:00:00' ; +----+-------------+-------+-------+---------------+------+---------+------+---------+---------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------+---------------+------+---------+------+---------+---------------------------------------------+ | 1 | SIMPLE | a | range | IX_L,IX_S | IX_L | 4 | NULL | 63 | Using where | | 1 | SIMPLE | b | index | IX_S | IX_S | 195 | NULL | 1038165 | Using where; Using index; Using join buffer | +----+-------------+-------+-------+---------------+------+---------+------+---------+---------------------------------------------+
MySQL Tips: explain结果中,join的查询代价可以用依次连乘rows估算。
?join顺序对了,简单的分析查询代价:普通join是1038165*1, straight_join是 63*1038165. 貌似MySQL没有错。但一定哪里不对!
发现异常
回到我们最初的设想。我们预计表a作为驱动表,是因为认为表b能够用上IX_S索引,而实际上staight_join的时候确实用上了,但这个结果与我们预期的又不同。
我们知道,索引的过滤性是决定了一个索引在查询中是否会被选中的重要因素,那么是不是b.S的过滤性不好呢?
MySQL Tips: show index from tbname返回结果中Cardinality的值可以表明一个索引的过滤性。
show index的结果太多,也可以从information_schema表中取。
mysql> select * from information_schema.STATISTICS where table_name='b' and index_name='IX_S'\G *************************** 1. row *************************** TABLE_CATALOG: def TABLE_SCHEMA: test TABLE_NAME: b NON_UNIQUE: 1 INDEX_SCHEMA: test INDEX_NAME: IX_S SEQ_IN_INDEX: 1 COLUMN_NAME: S COLLATION: A CARDINALITY: 1038165 SUB_PART: NULL PACKED: NULL NULLABLE: YES INDEX_TYPE: BTREE COMMENT: INDEX_COMMENT:
可以这个索引的CARDINALITY: 1038165,已经很大了。那这个表的估算行是多少呢。
show table status like 'b'\G *************************** 1. row *************************** Name: b Engine: InnoDB Version: 10 Row_format: Compact Rows: 1038165 Avg_row_length: 114 Data_length: 119160832 Max_data_length: 0 Index_length: 109953024 Data_free: 5242880 Auto_increment: NULL Create_time: 2014-05-23 00:24:25 Update_time: NULL Check_time: NULL Collation: utf8_general_ci Checksum: NULL Create_options: Comment: 1 row in set (0.00 sec)
从Rows: 1038165看出,IX_S这个索引的区分度被认为非常好,已经近似于唯一索引。
MySQL Tips: 在show table status结果中看到的Rows用于表示表的当前行数。对于MyISAM表这是一个精确值,但对InnoDB这是个估算值。
虽然是估算值,但优化器是以此为指导的,也就是说,上面的某个explain里面的数据完全不符合期望:staight_join结果中第二行的rows。
阶段结论
我们发现整个错误的逻辑是这样的:以a为驱动表的执行计划,由于索引b.S的rows估计为1038165导致优化器认为代价大于以b为驱动表。而实际上这个索引的区分度为1.(当然对explan结果比较熟悉的同学会发现,第二行的type字段和Extra字段一起诡异了)
也就是说,straight_join得到的每一行去b中查询的时候,都走了全表扫描。在MySQL里面出现这种情况的最常见的是类型转换。比如一个字符串字段,虽然包含的是全数字,但查询的时候传入的不是字符串格式。
在这个case里面,两个都是字符串。因此,就是字符集相关了。
回到两个表结构,发现S字段的声明差别在于 COLLATE utf8_bin -- 这个就是本case的根本原因了:a表得到的S值是utf8_bin,优化器认为类型不同,无法直接用上索引b.IX_S过滤。
至于为什么还会用上索引,这个是因为覆盖索引带来“误解”。
MySQL Tips:若查询的所有结果能够从某个索引完全得到,则会优先用遍历索引替代遍历数据。
作为验证,
mysql> explain SELECT * FROM a straight_JOIN b ON binary a.`S` = b.`S` WHERE a.`L` > '2014-03-30 00:55:00' AND a.`L` < '2014-03-30 01:00:00' ; +—-+————-+——-+——-+—————+——+———+——+———+————————————————+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——-+—————+——+———+——+———+————————————————+ | 1 | SIMPLE | a | range | IX_L | IX_L | 4 | NULL | 63 | Using where | | 1 | SIMPLE | b | ALL | IX_S | NULL | NULL | NULL | 1038165 | Range checked for each record (index map: 0x4) | +—-+————-+——-+——-+—————+——+———+——+———+————————————————+
由于结果是select *, 无法使用覆盖索引,因此第二行的key就显示为NULL. (笔者泪:要是早出这个结果查起来可方便多了)
优化
当然最直接的想法就是修改两个表的S字段的定义,改成相同即可。这个方法可以避免修改业务代码,但DDL代价略大。这里提供两种在SQL语句方面的优化。
1、select count(*) from b join (select s from a WHERE a.`L` > '2014-03-30 00:55:00' AND a.`L` < '2014-03-30 01:00:00') ta on b.S=ta.s;
这个写法比较直观,需要注意最后b.S和ta.S的顺序
2、SELECT count(*) FROM a JOIN b ON binary a.`S` = b.`S` WHERE a.`L` > '2014-03-30 00:55:00' AND a.`L` < '2014-03-30 01:00:00' ;
从前面的分析知道是由于b.S定义为utf8_bin.
MySQL Tips: MySQL中字符集命名规则中, XXX_bin与XXX的区别为大小写是否敏感。
这里我们将A.s全部增加binary限定,先转为小写,就是将临时结果集转成utf8_bin,之后使用b.S匹配时就能够直接利用索引。
其实两个改写方法的本质相同,区别是写法1是隐式转换。理论上说写法2速度更快些。
小结
做join的字段尽量设计为类型完全相同。

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

MySQL은 데이터 저장, 관리, 쿼리 및 보안에 적합한 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1. 다양한 운영 체제를 지원하며 웹 응용 프로그램 및 기타 필드에서 널리 사용됩니다. 2. 클라이언트-서버 아키텍처 및 다양한 스토리지 엔진을 통해 MySQL은 데이터를 효율적으로 처리합니다. 3. 기본 사용에는 데이터베이스 및 테이블 작성, 데이터 삽입, 쿼리 및 업데이트가 포함됩니다. 4. 고급 사용에는 복잡한 쿼리 및 저장 프로 시저가 포함됩니다. 5. 설명 진술을 통해 일반적인 오류를 디버깅 할 수 있습니다. 6. 성능 최적화에는 인덱스의 합리적인 사용 및 최적화 된 쿼리 문이 포함됩니다.

MySQL은 성능, 신뢰성, 사용 편의성 및 커뮤니티 지원을 위해 선택됩니다. 1.MYSQL은 효율적인 데이터 저장 및 검색 기능을 제공하여 여러 데이터 유형 및 고급 쿼리 작업을 지원합니다. 2. 고객-서버 아키텍처 및 다중 스토리지 엔진을 채택하여 트랜잭션 및 쿼리 최적화를 지원합니다. 3. 사용하기 쉽고 다양한 운영 체제 및 프로그래밍 언어를 지원합니다. 4. 강력한 지역 사회 지원을 받고 풍부한 자원과 솔루션을 제공합니다.

InnoDB의 잠금 장치에는 공유 잠금 장치, 독점 잠금, 의도 잠금 장치, 레코드 잠금, 갭 잠금 및 다음 키 잠금 장치가 포함됩니다. 1. 공유 잠금을 사용하면 다른 트랜잭션을 읽지 않고 트랜잭션이 데이터를 읽을 수 있습니다. 2. 독점 잠금은 다른 트랜잭션이 데이터를 읽고 수정하는 것을 방지합니다. 3. 의도 잠금은 잠금 효율을 최적화합니다. 4. 레코드 잠금 잠금 인덱스 레코드. 5. 갭 잠금 잠금 장치 색인 기록 간격. 6. 다음 키 잠금은 데이터 일관성을 보장하기 위해 레코드 잠금과 갭 잠금의 조합입니다.

MySQL 쿼리 성능이 좋지 않은 주된 이유는 인덱스 사용, 쿼리 최적화에 의한 잘못된 실행 계획 선택, 불합리한 테이블 디자인, 과도한 데이터 볼륨 및 잠금 경쟁이 포함됩니다. 1. 색인이 느리게 쿼리를 일으키지 않으며 인덱스를 추가하면 성능이 크게 향상 될 수 있습니다. 2. 설명 명령을 사용하여 쿼리 계획을 분석하고 Optimizer 오류를 찾으십시오. 3. 테이블 구조를 재구성하고 결합 조건을 최적화하면 테이블 설계 문제가 향상 될 수 있습니다. 4. 데이터 볼륨이 크면 분할 및 테이블 디비전 전략이 채택됩니다. 5. 높은 동시성 환경에서 거래 및 잠금 전략을 최적화하면 잠금 경쟁이 줄어들 수 있습니다.

데이터베이스 최적화에서 쿼리 요구 사항에 따라 인덱싱 전략을 선택해야합니다. 1. 쿼리에 여러 열이 포함되고 조건 순서가 수정되면 복합 인덱스를 사용하십시오. 2. 쿼리에 여러 열이 포함되어 있지만 조건 순서가 고정되지 않은 경우 여러 단일 열 인덱스를 사용하십시오. 복합 인덱스는 다중 열 쿼리를 최적화하는 데 적합한 반면 단일 열 인덱스는 단일 열 쿼리에 적합합니다.

MySQL 느린 쿼리를 최적화하려면 SlowQueryLog 및 Performance_Schema를 사용해야합니다. 1. SlowQueryLog 및 Set Stresholds를 사용하여 느린 쿼리를 기록합니다. 2. Performance_schema를 사용하여 쿼리 실행 세부 정보를 분석하고 성능 병목 현상을 찾고 최적화하십시오.

MySQL 및 SQL은 개발자에게 필수적인 기술입니다. 1.MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템이며 SQL은 데이터베이스를 관리하고 작동하는 데 사용되는 표준 언어입니다. 2.MYSQL은 효율적인 데이터 저장 및 검색 기능을 통해 여러 스토리지 엔진을 지원하며 SQL은 간단한 문을 통해 복잡한 데이터 작업을 완료합니다. 3. 사용의 예에는 기본 쿼리 및 조건 별 필터링 및 정렬과 같은 고급 쿼리가 포함됩니다. 4. 일반적인 오류에는 구문 오류 및 성능 문제가 포함되며 SQL 문을 확인하고 설명 명령을 사용하여 최적화 할 수 있습니다. 5. 성능 최적화 기술에는 인덱스 사용, 전체 테이블 스캔 피하기, 조인 작업 최적화 및 코드 가독성 향상이 포함됩니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

드림위버 CS6
시각적 웹 개발 도구

WebStorm Mac 버전
유용한 JavaScript 개발 도구
