찾다
데이터 베이스MySQL 튜토리얼MySQL Index Condition Pushdown(ICP)性能优化方法实例_MySQL

一 概念介绍

Index Condition Pushdown (ICP)是MySQL 5.6 版本中的新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。

a 当关闭ICP时,index 仅仅是data access 的一种访问方式,存储引擎通过索引回表获取的数据会传递到MySQL Server 层进行where条件过滤。

b 当打开ICP时,如果部分where条件能使用索引中的字段,MySQL Server 会把这部分下推到引擎层,可以利用index过滤的where条件在存储引擎层进行数据过滤,而非将所有通过index access的结果传递到MySQL server层进行where过滤.

优化效果:ICP能减少引擎层访问基表的次数和MySQL Server 访问存储引擎的次数,减少io次数,提高查询语句性能。

二 原理

Index Condition Pushdown is not used:

  1 Get the next row, first by reading the index tuple, and then by using the index tuple to locate and read the full table row.
  2 Test the part of the WHERE condition that applies to this table. Accept or reject the row based on the test result.
Index Condition Pushdown is used
  1 Get the next row s index tuple (but not the full table row).
  2 Test the part of the WHERE condition that applies to this table and can be checked using only index columns.
    If the condition is not satisfied, proceed to the index tuple for the next row.
  3 If the condition is satisfied, use the index tuple to locate and read the full table row.
  4 est the remaining part of the WHERE condition that applies to this table. Accept or reject the row based on the test result.

三 实践案例

a 环境准备
   数据库版本 5.6.16
   关闭缓存
  

代码如下:


     set query_cache_size=0;
     set query_cache_type=OFF;
 


   测试数据下载地址
b 当开启ICP时

代码如下:


mysql> SET profiling = 1;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> select * from employees where first_name='Anneke' and last_name like '%sig' ;
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+-----------+--------+------------+
| 10006  | 1953-04-20 | Anneke     | Preusig   | F      | 1989-06-02 |
+--------+------------+------------+-----------+--------+------------+
1 row in set (0.00 sec)
mysql> show profiles;
+----------+------------+--------------------------------------------------------------------------------+
| Query_ID | Duration   | Query                                                                          |
+----------+------------+--------------------------------------------------------------------------------+
| 1        | 0.00060275 | select * from employees where first_name='Anneke' and last_name like '%sig'    |
+----------+------------+--------------------------------------------------------------------------------+
3 rows in set, 1 warning (0.00 sec)

此时情况下根据MySQL的最左前缀原则, first_name 可以使用索引,last_name采用了like 模糊查询,不能使用索引。
c 关闭ICP

代码如下:


mysql> set optimizer_switch='index_condition_pushdown=off';
Query OK, 0 rows affected (0.00 sec)
mysql> SET profiling = 1;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> select * from employees where first_name='Anneke' and last_name like '%sig' ;
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+-----------+--------+------------+
| 10006  | 1953-04-20 | Anneke     | Preusig   | F      | 1989-06-02 |
+--------+------------+------------+-----------+--------+------------+
1 row in set (0.00 sec)
mysql> SET profiling = 0;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> show profiles;
+----------+------------+--------------------------------------------------------------------------------+
| Query_ID | Duration   | Query                                                                          |
+----------+------------+--------------------------------------------------------------------------------+
| 2        | 0.00097000 | select * from employees where first_name='Anneke' and last_name like '%sig'    |
+----------+------------+--------------------------------------------------------------------------------+
6 rows in set, 1 warning (0.00 sec)

当开启ICP时 查询在sending data环节时间消耗是 0.000189s

代码如下:


mysql> show profile cpu,block io for query 1;
+----------------------+----------+----------+------------+--------------+---------------+
| Status               | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out |
+----------------------+----------+----------+------------+--------------+---------------+
| starting             | 0.000094 | 0.000000 | 0.000000   | 0            | 0             |
| checking permissions | 0.000011 | 0.000000 | 0.000000   | 0            | 0             |
| Opening tables       | 0.000025 | 0.000000 | 0.000000   | 0            | 0             |
| init                 | 0.000044 | 0.000000 | 0.000000   | 0            | 0             |
| System lock          | 0.000014 | 0.000000 | 0.000000   | 0            | 0             |
| optimizing           | 0.000021 | 0.000000 | 0.000000   | 0            | 0             |
| statistics           | 0.000093 | 0.000000 | 0.000000   | 0            | 0             |
| preparing            | 0.000024 | 0.000000 | 0.000000   | 0            | 0             |
| executing            | 0.000006 | 0.000000 | 0.000000   | 0            | 0             |
| Sending data         | 0.000189 | 0.000000 | 0.000000   | 0            | 0             |
| end                  | 0.000019 | 0.000000 | 0.000000   | 0            | 0             |
| query end            | 0.000012 | 0.000000 | 0.000000   | 0            | 0             |
| closing tables       | 0.000013 | 0.000000 | 0.000000   | 0            | 0             |
| freeing items        | 0.000034 | 0.000000 | 0.000000   | 0            | 0             |
| cleaning up          | 0.000007 | 0.000000 | 0.000000   | 0            | 0             |
+----------------------+----------+----------+------------+--------------+---------------+
15 rows in set, 1 warning (0.00 sec)

当关闭ICP时 查询在sending data环节时间消耗是 0.000735s

代码如下:


mysql> show profile cpu,block io for query 2;
+----------------------+----------+----------+------------+--------------+---------------+
| Status               | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out |
+----------------------+----------+----------+------------+--------------+---------------+
| starting             | 0.000045 | 0.000000 | 0.000000   | 0            | 0             |
| checking permissions | 0.000007 | 0.000000 | 0.000000   | 0            | 0             |
| Opening tables       | 0.000015 | 0.000000 | 0.000000   | 0            | 0             |
| init                 | 0.000024 | 0.000000 | 0.000000   | 0            | 0             |
| System lock          | 0.000009 | 0.000000 | 0.000000   | 0            | 0             |
| optimizing           | 0.000012 | 0.000000 | 0.000000   | 0            | 0             |
| statistics           | 0.000049 | 0.000000 | 0.000000   | 0            | 0             |
| preparing            | 0.000016 | 0.000000 | 0.000000   | 0            | 0             |
| executing            | 0.000005 | 0.000000 | 0.000000   | 0            | 0             |
| Sending data         | 0.000735 | 0.001000 | 0.000000   | 0            | 0             |
| end                  | 0.000008 | 0.000000 | 0.000000   | 0            | 0             |
| query end            | 0.000008 | 0.000000 | 0.000000   | 0            | 0             |
| closing tables       | 0.000009 | 0.000000 | 0.000000   | 0            | 0             |
| freeing items        | 0.000023 | 0.000000 | 0.000000   | 0            | 0             |
| cleaning up          | 0.000007 | 0.000000 | 0.000000   | 0            | 0             |
+----------------------+----------+----------+------------+--------------+---------------+
15 rows in set, 1 warning (0.00 sec)

从上面的profile 可以看出ICP 开启时整个sql 执行时间是未开启的2/3,sending data 环节的时间消耗前者仅是后者的1/4。
ICP 开启时的执行计划 含有 Using index condition 标示 ,表示优化器使用了ICP对数据访问进行优化。

代码如下:


mysql> explain select * from employees where first_name='Anneke' and last_name like '%nta' ;
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-----------------------+
| id | select_type | table     | type | possible_keys | key          | key_len | ref   | rows | Extra                 |
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-----------------------+
| 1  | SIMPLE      | employees | ref  | idx_emp_fnln  | idx_emp_fnln | 44      | const | 224  | Using index condition |
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-----------------------+
1 row in set (0.00 sec)


ICP 关闭时的执行计划显示use where.

代码如下:


mysql> explain select * from employees where first_name='Anneke' and last_name like '%nta' ;
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-------------+
| id | select_type | table     | type | possible_keys | key          | key_len | ref   | rows | Extra       |
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-------------+
| 1  | SIMPLE      | employees | ref  | idx_emp_fnln  | idx_emp_fnln | 44      | const | 224  | Using where |
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-------------+
1 row in set (0.00 sec)

案例分析

以上面的查询为例关闭ICP 时,存储引擎通前缀index first_name 访问表中225条first_name 为Anneke的数据,并在MySQL server层根据last_name like '%sig' 进行过滤
开启ICP 时,last_name 的like '%sig'条件可以通过索引字段last_name 进行过滤,在存储引擎内部通过与where条件的对比,直接过滤掉不符合条件的数据。该过程不回表,只访问符合条件的1条记录并返回给MySQL Server ,有效的减少了io访问和各层之间的交互。

ICP 关闭时 ,仅仅使用索引作为访问数据的方式。

ICP 开启时 ,MySQL将在存储引擎层 利用索引过滤数据,减少不必要的回表,注意 虚线的using where 表示如果where条件中含有没有被索引的字段,则还是要经过MySQL Server 层过滤。

四 ICP的使用限制

1 当sql需要全表访问时,ICP的优化策略可用于range, ref, eq_ref,  ref_or_null 类型的访问数据方法 。
2 支持InnoDB和MyISAM表。
3 ICP只能用于二级索引,不能用于主索引。
4 并非全部where条件都可以用ICP筛选。
   如果where条件的字段不在索引列中,还是要读取整表的记录到server端做where过滤。
5 ICP的加速效果取决于在存储引擎内通过ICP筛选掉的数据的比例。
6 5.6 版本的不支持分表的ICP 功能,5.7 版本的开始支持。
7 当sql 使用覆盖索引时,不支持ICP 优化方法。

代码如下:


mysql> explain select * from employees where first_name='Anneke' and last_name='Porenta' ;
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+-----------------------+
| id | select_type | table     | type | possible_keys | key          | key_len | ref         | rows | Extra                 |
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+-----------------------+
| 1  | SIMPLE | employees      | ref  | idx_emp_fnln  | idx_emp_fnln | 94      | const,const | 1    | Using index condition |
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+-----------------------+
1 row in set (0.00 sec)
mysql> explain select first_name,last_name from employees where first_name='Anneke' and last_name='Porenta' ;
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+--------------------------+
| id | select_type | table     | type | possible_keys | key          | key_len | ref         | rows | Extra                    |
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+--------------------------+
| 1  | SIMPLE      | employees | ref  | idx_emp_fnln  | idx_emp_fnln | 94      | const,const | 1    | Using where; Using index |
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+--------------------------+
1 row in set (0.00 sec)

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
MySQL : 세계에서 가장 인기있는 데이터베이스 소개MySQL : 세계에서 가장 인기있는 데이터베이스 소개Apr 12, 2025 am 12:18 AM

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

MySQL의 중요성 : 데이터 저장 및 관리MySQL의 중요성 : 데이터 저장 및 관리Apr 12, 2025 am 12:18 AM

MySQL은 데이터 저장, 관리, 쿼리 및 보안에 적합한 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1. 다양한 운영 체제를 지원하며 웹 응용 프로그램 및 기타 필드에서 널리 사용됩니다. 2. 클라이언트-서버 아키텍처 및 다양한 스토리지 엔진을 통해 MySQL은 데이터를 효율적으로 처리합니다. 3. 기본 사용에는 데이터베이스 및 테이블 작성, 데이터 삽입, 쿼리 및 업데이트가 포함됩니다. 4. 고급 사용에는 복잡한 쿼리 및 저장 프로 시저가 포함됩니다. 5. 설명 진술을 통해 일반적인 오류를 디버깅 할 수 있습니다. 6. 성능 최적화에는 인덱스의 합리적인 사용 및 최적화 된 쿼리 문이 포함됩니다.

MySQL을 사용하는 이유는 무엇입니까? 혜택과 장점MySQL을 사용하는 이유는 무엇입니까? 혜택과 장점Apr 12, 2025 am 12:17 AM

MySQL은 성능, 신뢰성, 사용 편의성 및 커뮤니티 지원을 위해 선택됩니다. 1.MYSQL은 효율적인 데이터 저장 및 검색 기능을 제공하여 여러 데이터 유형 및 고급 쿼리 작업을 지원합니다. 2. 고객-서버 아키텍처 및 다중 스토리지 엔진을 채택하여 트랜잭션 및 쿼리 최적화를 지원합니다. 3. 사용하기 쉽고 다양한 운영 체제 및 프로그래밍 언어를 지원합니다. 4. 강력한 지역 사회 지원을 받고 풍부한 자원과 솔루션을 제공합니다.

InnoDB 잠금 장치 (공유 잠금, 독점 잠금, 의도 잠금, 레코드 잠금, 갭 잠금, 차세대 자물쇠)를 설명하십시오.InnoDB 잠금 장치 (공유 잠금, 독점 잠금, 의도 잠금, 레코드 잠금, 갭 잠금, 차세대 자물쇠)를 설명하십시오.Apr 12, 2025 am 12:16 AM

InnoDB의 잠금 장치에는 공유 잠금 장치, 독점 잠금, 의도 잠금 장치, 레코드 잠금, 갭 잠금 및 다음 키 잠금 장치가 포함됩니다. 1. 공유 잠금을 사용하면 다른 트랜잭션을 읽지 않고 트랜잭션이 데이터를 읽을 수 있습니다. 2. 독점 잠금은 다른 트랜잭션이 데이터를 읽고 수정하는 것을 방지합니다. 3. 의도 잠금은 잠금 효율을 최적화합니다. 4. 레코드 잠금 잠금 인덱스 레코드. 5. 갭 잠금 잠금 장치 색인 기록 간격. 6. 다음 키 잠금은 데이터 일관성을 보장하기 위해 레코드 잠금과 갭 잠금의 조합입니다.

열악한 MySQL 쿼리 성능의 일반적인 원인은 무엇입니까?열악한 MySQL 쿼리 성능의 일반적인 원인은 무엇입니까?Apr 12, 2025 am 12:11 AM

MySQL 쿼리 성능이 좋지 않은 주된 이유는 인덱스 사용, 쿼리 최적화에 의한 잘못된 실행 계획 선택, 불합리한 테이블 디자인, 과도한 데이터 볼륨 및 잠금 경쟁이 포함됩니다. 1. 색인이 느리게 쿼리를 일으키지 않으며 인덱스를 추가하면 성능이 크게 향상 될 수 있습니다. 2. 설명 명령을 사용하여 쿼리 계획을 분석하고 Optimizer 오류를 찾으십시오. 3. 테이블 구조를 재구성하고 결합 조건을 최적화하면 테이블 설계 문제가 향상 될 수 있습니다. 4. 데이터 볼륨이 크면 분할 및 테이블 디비전 전략이 채택됩니다. 5. 높은 동시성 환경에서 거래 및 잠금 전략을 최적화하면 잠금 경쟁이 줄어들 수 있습니다.

Composite Index와 여러 단일 열 인덱스를 언제 사용해야합니까?Composite Index와 여러 단일 열 인덱스를 언제 사용해야합니까?Apr 11, 2025 am 12:06 AM

데이터베이스 최적화에서 쿼리 요구 사항에 따라 인덱싱 전략을 선택해야합니다. 1. 쿼리에 여러 열이 포함되고 조건 순서가 수정되면 복합 인덱스를 사용하십시오. 2. 쿼리에 여러 열이 포함되어 있지만 조건 순서가 고정되지 않은 경우 여러 단일 열 인덱스를 사용하십시오. 복합 인덱스는 다중 열 쿼리를 최적화하는 데 적합한 반면 단일 열 인덱스는 단일 열 쿼리에 적합합니다.

MySQL에서 느린 쿼리를 식별하고 최적화하는 방법은 무엇입니까? (느린 쿼리 로그, Performance_schema)MySQL에서 느린 쿼리를 식별하고 최적화하는 방법은 무엇입니까? (느린 쿼리 로그, Performance_schema)Apr 10, 2025 am 09:36 AM

MySQL 느린 쿼리를 최적화하려면 SlowQueryLog 및 Performance_Schema를 사용해야합니다. 1. SlowQueryLog 및 Set Stresholds를 사용하여 느린 쿼리를 기록합니다. 2. Performance_schema를 사용하여 쿼리 실행 세부 정보를 분석하고 성능 병목 현상을 찾고 최적화하십시오.

MySQL 및 SQL : 개발자를위한 필수 기술MySQL 및 SQL : 개발자를위한 필수 기술Apr 10, 2025 am 09:30 AM

MySQL 및 SQL은 개발자에게 필수적인 기술입니다. 1.MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템이며 SQL은 데이터베이스를 관리하고 작동하는 데 사용되는 표준 언어입니다. 2.MYSQL은 효율적인 데이터 저장 및 검색 기능을 통해 여러 스토리지 엔진을 지원하며 SQL은 간단한 문을 통해 복잡한 데이터 작업을 완료합니다. 3. 사용의 예에는 기본 쿼리 및 조건 별 필터링 및 정렬과 같은 고급 쿼리가 포함됩니다. 4. 일반적인 오류에는 구문 오류 및 성능 문제가 포함되며 SQL 문을 확인하고 설명 명령을 사용하여 최적화 할 수 있습니다. 5. 성능 최적화 기술에는 인덱스 사용, 전체 테이블 스캔 피하기, 조인 작업 최적화 및 코드 가독성 향상이 포함됩니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전