확장 가능한 지도: 온라인 장거리 벡터화 HD 지도 구축을 위한 확장 가능한 지도 학습
논문을 읽으려면 다음 링크를 클릭하세요: https://arxiv.org/pdf/2310.13378.pdf
코드 링크: https:/ / github.com/jingy1yu/ScalableMap
저자는 우한대학교 출신입니다
논문 아이디어:
이 논문은 차량 카메라 센서를 사용하여 온라인 장거리 벡터를 구성하는 새로운 엔드투엔드 프로세스를 제안합니다. -정의(HD) 지도. 고정밀 지도의 벡터화된 표현은 폴리라인과 폴리곤을 사용하여 다운스트림 작업에서 널리 사용되는 지도 기능을 나타냅니다. 그러나 동적 표적 탐지를 참조하여 설계된 이전 솔루션은 선형 맵 요소 내의 구조적 제약을 무시하여 장거리 장면에서 성능 저하를 초래했습니다. 이 문서에서는 지도 기능의 속성을 사용하여 지도 구성 성능을 향상합니다. 본 논문에서는 선형 구조의 안내에 따라 보다 정확한 BEV(조감도) 특징을 추출한 다음 벡터화된 그래프 요소의 확장성을 더욱 활용하기 위한 계층적 희소 그래프 표현을 제안하고 이 표현을 기반으로 하는 점진적인 디코딩 메커니즘을 설계합니다. . 이 기사의 방법 ScalableMap은 nuScenes 데이터세트에서 특히 장거리 장면에서 탁월한 성능을 보여주었습니다. 이전 최첨단 모델과 비교하여 6.5 mAP가 향상되고 18.3
주요 기여:
(i) 이 기사에서는 최초의 엔드투엔드 장거리 벡터 지도 구축 파이프라인인 ScalableMap을 제안합니다. 본 논문에서는 보다 정확한 BEV 특징을 추출하기 위해 매핑 요소의 구조적 특성을 활용하고, 확장 가능한 벡터화된 요소를 기반으로 한 HSMR을 제안하고 이에 따른 프로그레시브 디코더 및 감독 전략을 설계합니다. 이 모든 것이 탁월한 장거리 지도 인식을 가능하게 합니다.
광범위한 실험 평가를 통해 이 연구에서는 nuScenes 데이터세트[17]에서 ScalableMap의 성능을 테스트했습니다. 연구 방법은 장거리 고정밀 지도 학습에서 최첨단 결과를 달성하여 기존 다중 모달 방법보다 6.5mAP를 향상시키면서 초당 18.3프레임의 속도에 도달했습니다.
네트워크 설계:
이것은 기사 목표는 벡터화된 지도 요소의 구조적 특성을 활용하여 더 먼 거리에서 지도 요소를 정확하게 감지하는 문제를 해결하는 것입니다. 먼저, 본 논문에서는 위치 인식 BEV 특징과 인스턴스 인식 BEV 특징을 각각 두 개의 분기를 통해 추출하고 이를 선형 구조의 안내 하에 융합하여 하이브리드 BEV 특징을 획득한다. 다음으로, 본 논문에서는 희소하지만 정확한 방식으로 맵 요소를 추상화하는 계층적 희소 맵 표현(HSMR)을 제안합니다. 이 표현을 DETR[16]이 제안한 계단식 디코딩 계층과 통합하여 이 논문은 벡터화된 매핑 요소의 확장성과 추론 정확도를 향상시키는 점진적 감독 전략을 활용하여 구조화된 정보의 제약을 강화하는 점진적 디코더를 설계합니다. 이 기사의 솔루션인 ScalableMap은 지도의 샘플링 밀도를 동적으로 증가시켜 다양한 축척에서 추론 결과를 얻습니다. 이를 통해 이 기사에서는 보다 정확한 지도 정보를 더 빠르게 얻을 수 있습니다.
아래 재작성된 내용을 참고하세요. 그림 1: ScalableMap 개요. (a) 구조 기반 하이브리드 BEV 특징 추출기. (b) 계층적 희소 맵 표현 및 프로그레시브 디코더. (c) 점진적 감독
그림 2: 점진적 폴리라인 손실 시각화.
실험 결과:
원래 의미를 바꾸지 않고 내용을 다시 작성하려면 원문을 중국어로 다시 작성해야 합니다
Yu, J., Zhang , Z., Xia, S., Sang, J.(2023). ScalableMap: 온라인 장거리 벡터화 HD 지도 구축을 위한 확장 가능한 지도 학습입니다. ArXiv. /abs/2310.13378
다시 작성해야 할 내용은 다음과 같습니다. 원래 의미를 변경하지 않고 내용을 다시 작성합니다. 다시 작성할 언어는 중국어일 필요가 없습니다.
위 내용은 ScalableMap: 온라인 장거리 벡터화 고정밀 지도 구축을 위한 확장 가능한 지도 학습의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

소개 파이썬 기능에서 변수의 네임 스페이스, 범위 및 동작을 이해하는 것은 효율적으로 작성하고 런타임 오류 또는 예외를 피하는 데 중요합니다. 이 기사에서는 다양한 ASP를 탐구 할 것입니다

소개 생생한 그림과 조각으로 둘러싸인 아트 갤러리를 걷는 것을 상상해보십시오. 이제 각 작품에 질문을하고 의미있는 대답을 얻을 수 있다면 어떨까요? “어떤 이야기를하고 있습니까?

제품 케이던스를 계속하면서 이번 달 Mediatek은 새로운 Kompanio Ultra and Dimensity 9400을 포함한 일련의 발표를했습니다. 이 제품은 스마트 폰 용 칩을 포함하여 Mediatek 비즈니스의 전통적인 부분을 채우고 있습니다.

#1 Google은 Agent2agent를 시작했습니다 이야기 : 월요일 아침입니다. AI 기반 채용 담당자로서 당신은 더 똑똑하지 않고 더 똑똑하지 않습니다. 휴대 전화에서 회사의 대시 보드에 로그인합니다. 세 가지 중요한 역할이 공급되고, 검증되며, 예정된 FO가 있음을 알려줍니다.

나는 당신이되어야한다고 생각합니다. 우리 모두는 Psychobabble이 다양한 심리적 용어를 혼합하고 종종 이해할 수 없거나 완전히 무의미한 모듬 채터로 구성되어 있다는 것을 알고 있습니다. 당신이 fo를 뿌리기 위해해야 할 일

이번 주 발표 된 새로운 연구에 따르면 2022 년에 제조 된 플라스틱의 9.5%만이 재활용 재료로 만들어졌습니다. 한편, 플라스틱은 계속해서 매립지와 생태계에 전 세계에 쌓이고 있습니다. 그러나 도움이 진행 중입니다. 엥인 팀

최근 Enterprise Analytics 플랫폼 Alteryx의 CEO 인 Andy MacMillan과의 대화는 AI 혁명 에서이 비판적이면서도 저평가 된 역할을 강조했습니다. MacMillan에서 설명했듯이 원시 비즈니스 데이터와 AI-Ready Informat의 격차

이 데이터를 이용한이 에피소드에서 우리는 4 중 Kaggle Grandmaster이자 기계 학습 솔루션 전문가 인 Rohan Rao와 함께 매혹적인 데이터 과학 세계로 뛰어 들었습니다. Rohan은 전략적 파트너십에 대한 통찰력을 공유합니다


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.
