데이터 증강은 인공지능과 머신러닝 분야의 핵심 기술입니다. 여기에는 모델 성능과 일반화를 개선하기 위해 기존 데이터세트에 대한 변형을 만드는 작업이 포함됩니다. Python은 여러 가지 강력한 데이터 증대 라이브러리를 제공하는 인기 있는 AI 및 ML 언어입니다. 이 기사에서는 데이터 증대를 위한 10개의 Python 라이브러리를 소개하고 각 라이브러리에 대한 코드 조각과 설명을 제공합니다.
Augmentor
Augmentor는 이미지 향상을 위한 범용 Python 라이브러리입니다. 회전, 뒤집기, 색상 조작 등 다양한 작업을 이미지에 쉽게 적용할 수 있습니다. 다음은 이미지 향상을 위해 Augmentor를 사용하는 방법에 대한 간단한 예입니다.
import Augmentor p = Augmentor.Pipeline("path/to/your/images") p.rotate(probability=0.7, max_left_rotatinotallow=25, max_right_rotatinotallow=25) p.flip_left_right(probability=0.5) p.sample(100)
Albumentations
Albumentations Master는 무작위 회전, 뒤집기, 밝기 조정과 같은 다양한 향상 기능을 지원합니다. 그는 제가 가장 일반적으로 사용하는 향상 라이브러리 중 하나입니다
import albumentations as A transform = A.Compose([A.RandomRotate90(),A.HorizontalFlip(),A.RandomBrightnessContrast(), ]) augmented_image = transform(image=image)["image"]
Imgaug
Imgaug는 이미지와 비디오를 향상시키는 데 사용되는 라이브러리입니다. 기하학적 변환 및 색 공간 수정을 포함하여 광범위한 향상된 기능을 제공합니다. 다음은 Imgaug를 사용한 예입니다.
import imgaug.augmenters as iaa augmenter = iaa.Sequential([iaa.Fliplr(0.5),iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0, 2.0))),iaa.ContrastNormalization((0.5, 2.0)), ]) augmented_image = augmenter.augment_image(image)
nlpaug
nlpaaug는 텍스트 데이터 증대를 위해 특별히 설계된 라이브러리입니다. 동의어 대체, 문자 수준 대체 등 텍스트 변형을 생성하기 위한 다양한 기술을 제공합니다.
import nlpaug.augmenter.word as naw aug = naw.ContextualWordEmbsAug(model_path='bert-base-uncased', actinotallow="insert") augmented_text = aug.augment("This is a sample text.")
imgaugment
imgauge는 이미지 향상에 초점을 맞춘 경량 라이브러리입니다. 사용하기 쉽고 회전, 뒤집기, 색상 조정과 같은 작업을 제공합니다.
from imgaug import augmenters as iaa seq = iaa.Sequential([iaa.Fliplr(0.5),iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0, 2.0))),iaa.ContrastNormalization((0.5, 2.0)), ]) augmented_image = seq(image=image)
TextAttack
TextAttack은 자연어 처리(NLP) 모델을 강화하고 공격하기 위한 Python 라이브러리입니다. NLP 작업에 대한 적대적인 예를 생성하기 위한 다양한 변환을 제공합니다. 사용 방법은 다음과 같습니다.
from textattack.augmentation import WordNetAugmenter augmenter = WordNetAugmenter() augmented_text = augmenter.augment("The quick brown fox")
TAAE
텍스트 증강 및 적대적 예(TAAE) 라이브러리는 텍스트 향상을 위한 또 다른 도구입니다. 여기에는 동의어 대체 및 문장 섞기와 같은 기술이 포함됩니다.
from taae import SynonymAugmenter augmenter = SynonymAugmenter() augmented_text = augmenter.augment("This is a test sentence.")
Audiomentations
Audiomentations는 오디오 데이터 향상에 중점을 둡니다. 사운드 처리와 관련된 작업에 필수적인 라이브러리입니다.
import audiomentations as A augmenter = A.Compose([A.PitchShift(),A.TimeStretch(),A.AddBackgroundNoise(), ]) augmented_audio = augmenter(samples=audio_data, sample_rate=sample_rate)
ImageDataAugmentor
ImageDataAugmentor는 이미지 데이터 증대를 위해 설계되었으며 인기 있는 딥 러닝 프레임워크와 잘 작동합니다. TensorFlow와 함께 사용하는 방법은 다음과 같습니다.
from ImageDataAugmentor.image_data_augmentor import * import tensorflow as tf datagen = ImageDataAugmentor(augment=augmentor,preprocess_input=None, ) train_generator = datagen.flow_from_directory("data/train", batch_size=32, class_mode="binary")
Keras ImageDataGenerator
Keras는 Keras와 TensorFlow를 사용할 때 이미지 향상을 위한 내장 솔루션인 ImageDataGenerator 클래스를 제공합니다.
from tensorflow.keras.preprocessing.image import ImageDataGenerator datagen = ImageDataGenerator(rotation_range=40,width_shift_range=0.2,height_shift_range=0.2,shear_range=0.2,zoom_range=0.2,horizontal_flip=True,fill_mode="nearest", ) augmented_images = datagen.flow_from_directory("data/train", batch_size=32)
Summary
이 라이브러리는 이미지 및 텍스트 데이터에 대한 광범위한 데이터 증대 기술을 다루고 있으므로 도움이 되길 바랍니다.
위 내용은 데이터 증대를 위한 10개의 Python 라이브러리의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

드림위버 CS6
시각적 웹 개발 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

WebStorm Mac 버전
유용한 JavaScript 개발 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

뜨거운 주제



